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FOREWORD

This Research Report documents the findings of a study inteo the use of a
finite element modeling system for 2-dimensional flow in a horizontal plane
(FESWMS-2DH). The model was developed for analyzing backwater and flow
distribution at width constructions and highway crossings of rivers and flood
plains. A large number of alternative analytic components were tested,
evaluated, and selectively incorporated into the model to enhance efficiency,
accuracy, and capability.

The report was prepared for FHWA by the United States Geological Survey, Water
Resources Division, with technical guidance from the FHWA Offices of Research,
Development, and Technology.
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This document is disseminated under the sponsorship of the Department of
Transportation in the interest of information exchange. The United States
Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the author who is responsible
for the facts and the accuracy of the data presented herein. The contents do
not necessarily reflect the policy of the Department of Transportation.

This report does not constitute a standard, specification, or requlation. The
United States Government does not endorse products or manufacturers. Trade or
manufacturers’ names appear herein only because they are considered essential
to the objective of this document.
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Symbol When Yeu Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol
LENGTH LENGTH
in inches 254 millimetres mm mm millimetres 0.039 inches in
ft fest 0.305 metres m m metres 3.268 foet ft
yd yards 0914 metres m m metres 1.09 yards yd
mi miles 1.61 kilometres km km kilometres 0.621 miles mi
AREA AREA
in? square inches 6452 millimetres squared mm? mm? millimetres squared  0.0016 square inches in?
ft2 square feet 0.093 metres squared m? m metres squared 10.764 square fest ft
yd? square yards 0.836 metres squared m? ha hectares 2.47 acres ac
ac acres 0.405 hectares ha km2 kilometres squared 0.386 square miles mié
mi square miles 2.59 kilometres squared  km?
VOLUME
VOLUME - _

. _ mbL millilitres 0.034 fluid ounces fl oz
fioz fiuid ounces 29.57 millilitres mlL L litres 0.264 galons gal
gal gallons 3.785 litres ] L m metres cubed 35.315 cubic foet fto

f? cubic feet 0.028 metres cubed m* m? metres cubed 1.308 cubic yards yd®
yd® . cubic yards 0.765 metres cubed m?
NOTE: Volumes greater than 1000 L shall be shown in m®. MASS
9 grams 0.035 éunces oz
kg kilograms 2.205 pounds b
MASS Mg megagrams 1.102 short tons (2000 k) T
oz ounces 28.35 grams E
ib pounds 0.454 kilograms g
T short tons (2000 b)  0.807 megagrams Mg TEMPERATURE (exact)
°C Caelcius 1.8C + 32 Fahrenheit °F
temperature temperature
TEMPERATURE (exact) Pe P .
°F Fahrenheit 5(F-32)/9 Calius e - 32 98.6 212
temperature temperature

37

40 ¢ ’ 40 80 l 120 160 200 ’
- 20 0 20 40 60 100
g 80

°C

* Sl is the symbeol for the International System of Measurement

(Revised April 1969)




TABLE OF CONTENTS

Page

INTRODUCTION LR R A BN B N I R A N N A I I B B B S N R R B R A I R R O A O B B I B Y Y ) 1

EQUATION FORMULATION vuveeceesens ceeeenae ceensan Ceesesean R, 10
Conservative and Nonconservative Primitive

Formulations .eceeccecnnsntncancaas seserssenuasr e 10

Velocity and Unit-Discharge Formulations ....... ceersaaa 14

Initial and Boundary Conditions for Primitive-
Equation FormulationsS e.evvsvssnsissoossssssosssrsosse 15

Wave-Equation and Vorticlty-Stream-Function
Fomulations b b ® 5 8 8 B S 6O e NS R NS S e e e A * r s 17

Momentum-Correction Coefficilents sesvierireensissonanass 18
Bed Shear SEIESS ceeeesessnenrassrsvacssosrennsscnnnsanns 20
Surface Shear SETESS eesesreseastssoasssstssssnassssncnns 22
Lateral Stresses ....... Frrreareresrrer st nsaaas 23
Eddy ViScOoSIitIes eeeueesseecnsvssestorsonsncsassana 24
Turbulence Models ceceivvcnnssrasnconssvensarssnnne 25
Turbulence Models in FLOMOD ..... crseacecnn ecienes 32
Weir Flow and Roadway Overtopping ...cvescsceccsncensses 34
Bridge/Culvert FLlOW ecveseacscsrsverosessoasasssanaanses 35
One-Dimensional Bridge/Culvert FIOW eevesivecensrvs 36
Two=Dimensional Bridge/Culvert FLlOW ceeeeescesnnaes 37

APPLYINRG THE FINITE~-ELEMENT METHOD TO THE SHALLOW-
WATER EQUATIONS sevrnvacttrororsssnresnscncossansasanarssncas 40

Interpolation Functions and Elements seseeerassnerooesns 41
Solution MethodS ceerssescataossscceoesnsstsconnnes chreaa 50

Numerical Integration .eeeeeirsecrorssosaserttissassassnann 54

iii



TABLE OF CONTENTS (Continued)

Page

Solution of Nonlinear Algebraic Equations ...cioesvncscs 56
Solution of Linear Algebralc Equations ...eeeveveeesonns 59
Banded~Storage Solution Scheme ........cieiicacanns 60

Partitioned-Block Skyline-Storage Solution

Scheme L B B B N B BN BN R DN B R B B I I B BE R O L N N O RN N DN B BN BRI N B 61
Frontal Solution Scheme ............ teeseavaannans 62
Conjugate-Gradient Solution Scheme ...c.ceiireececen 64

Finite-Element EqUAtions ..:eeesesrssnnssrencnsonerssans 65
Residuals .c.ovieinnnenennennnnnns feenaisenn cerrrraen 65

Time Derivatives teveviiiansrieiisonaccannncanassnan 69
Application of Boundary and Special Conditions .... 71

Open boundaries ...ieceeeieeccanncvensancans veus 72

Solid boundaries ..ieeceeescveaniasrsssarsnnae 75

Total discharge across a boundary .eeveescesss 76

FEATURES OF THE MODELING SYSTEM FESWMS=2DH seevcecoocanasasss 80
Graphic Output Standard ..... Cteeeeneseceannsann e BO
Data Input Module, DINMOD .sievsoneccessonnsncacnacan . 80
Error Checking e«ieesessentiorceencssossnssarsansnes 81
Automatic Network Generation ......c.ec... ceeens oo 82
Network Refinement sovevestiovracersssesssronncanns 86
Element Resequencing ceeeceieoesacarsanrsrorornnnans 88
Minimum—frontgrowth method .......cc..... ceees 91

Level=structure method sieeevsvisroctsaacnssna 92.

iv



TABLE OF CONTENTIS (Continued)

Page
Depth-Averaged Flow Module, FLOMOD .....cccnaaecen caenas 92
Error Checking sviveeesesnsseresssvastasrsnssernsess 93
Automatic Boundary Adjustment ......... teesersoneaa 94
The Continuity NOIM seeeessevrosnsssossrssrsonncssnsse 96
Output Analysis Module, ANOMOD ...cversonnsrrvenssasrnes 97

APPLYING FESWMS-2DH TO DATA FROM THE FLOOD PLAIN SIMULATION
FACILITY L2 I I R B D I B I I B IR I IR R I R B B R BN B R B I RN IR B TR O B BN BN N N R LR IR BN AR N 99

Research Facility ...eeeeiieerassrvassttssesccsrsonsnsas 99
Data Collection «osvnsssrrsosessssssssnsressassasresnssss 102
Experiments on Flow through Contracted Openings ......., 104
Data ProcesSsSing .eveeeeeeseossscessecsasssanesssoseans .. 109
Data Analysis ..vvevreneenrerenersrnnnsscsnsnnsasssssnnsss L1O
Modeling Floed Plain Simulation Facility Data ....... ... 118
Model Ground-Surface Elevations ee.eseevececoessaes 118
Modeling Normal Flows ..eeveereenevassrsonesssonnass 118
Modeling Constricted FLOWS s.civreccicronnnacsssnes 122
Sensitivity AnalysSes .ssisessctsssascatosonssesssnes 209

Conclusions from the Application of FESWMS-2DH to
Flood Plain Simulation Facility Data +eesseevsoas 218

USE AND CALIBRATION OF FESWMS=2DH ..cievenecreensosnsenacsess 223
Data Collection and Analysis «eiveceinenveciasceanannnes 224
Network Deslgn ..oviciecuessiacsannsonnessonnassssssneasss 225

Model Adjustment, Including Calibration .......v.eveeese 233



TABLE OF CONTENTS (Continued)

Page

USE OF FESWMS-2DH BY THE HIGHWAY INDUSTRY ..eoecsevenucnoccsss 239
Operational Potential of FESWMS=2DH .ecivvsasscssresesse 239
Training sseveoossoenosrsnsvonscssnescesrsonssossrnosaasses 241
Future Possible Improvements to FESWMS=2DH cc.cevrsevess 243
Software MaintenanCe ....cceecesesscacssanoasssoscncecsss 245
SUMMARY AND CONCLUSIONS seveevvasecascasssnarsssccnssssancanas 247

REFERENCES +rvsevacsrsronssssnnsscssrrnssssnsnsoansssrnnsansss 230

vi



Flgure

10

11

12

LIST OF FIGURES

Examples of the types of two-dimensional elements
used in FESWMS=-2DH: (a) a six-node triangle,
(b) an eight—node "serendipity” quadrilateral,
and (c) a nine-node "Lagrangian® quadrilateral ....

Two—dimensional "mapping” of some elements ..........

Examples of (a) a region inside of which a finite-
element network is to be generated automatically
and (b) an initial subdivision of the region
into simply connected subregions A and B ... .v...,

Formation of two new elements by automatic
triangulation «ciecececstoncescesroncscsrsosecarenons

Neighborhood of node 1 in element k used in Laplacian
smoothing of a finite-element network that has
been generated automatically .....cevciiennnninnann

Example of a network that has been generated
automatically: (a} an initial subdivision
defined by a serles of connected corner nodes
and (b) the network generated inside the initial
subdivision .eciiiiiiiniiiiiii ittt eannrenn

Refinement of (a) a six-node triangular element,
(b) an eight-node quadrilateral element, and
{c) a nine-node quadrilateral element ....ceoeeveos.

Plan view of the Flood Plain Simulation Facility ....

Vertical velocity profile measured 135 feet from the
right bank at cross section 1050 during experiment
56810105- The tOtal depth iS 1.29 feet AR R

Velocity correction factor as a function of relative
roughness for 1975 vertical velocity profiles .....

Velocity correction factor as a function of discharge
Froude number for 1975 vertical velocity

profiles NN I N N A N T R E R N T E N
Velocity correction factor as a function of point

velocity Froude number for 1975 vertical velocity
Proflles c.iiiciinnaistinaecnrronnnssorasssssnnnancs

vii

Page

43

43

83

84

86

87

89

101

111

113

114

115



LIST OF FIGURES (Continued)

Figure Page

13 Corrected and uncorrected velocity components for
experiment S6410085 at cross section 900 .......... 117

14 Ground-surface-elevation (GSE) data and model ground-
surface representation at cross section 400 ....... 119

15 Upstream half of the finite-element network used to
model normal-flow experiments «e.ceesseesaaaressess 120

16 Observed and computed water-surface elevations (WSE)
for experiment 85810015 sevvivenvecsvsnscrsnnnneaese 122

17 Observed and computed water—surface elevations (WSE)
for experiment S6410085 ...svveevensssannsansaoseses 123

18 Observed and computed water—-surface elevations (WSE)
for experiment S7010215 .ceuveecveecenareccnnsnnanss 123

19 Observed and computed veloclty components at cross
section 900 for experiment S58L0015 s..ievevnnssrses 124

20 Observed and computed velocity components at cross
section 950 for experiment S$5810015 ¢ievesvenessees 124

21 Observed and computed velocity components at cross
section 1050 for experiment $581001l5 ....veeeeessss 125

22 Observed and computed velocity components at cross
section 1100 for experiment S58100Ll5 .....e0ses00es 125

23 Observed and computed velocity components at cross
section 900 for experiment $6410085 ........ ceeeees 126
24 Observed and computed velocity components at cross

section 950 for experiment S6410085 ......cec...... 126

25 Observed and computed velocity components at cross
section 1050 for experiment S6410085 .............. 127

26 Observed and computed velocity components at cross
section 1100 for experiment S6410085 .....iceeevasse 127

27 Observed and computed velocity components at cross
section 900 for experiment S7010215 ..ccvciavraeess 128

viii



Figure

28

29

30

31

32

33

34

35

36

LIST OF FIGURES (Continued)

Observed and computed velocity coamponents at cross
section 950 for experiment S7010215 ..vverennnnasas

Observed and computed velocity components at cross
section 1050 for experiment S7010215 ....cuieevnnnns

Observed and computed velocity components at cross
section 1100 for experiment 57010215 ..ceoeivecnssn

Part of the right half of finite-element network 1
upstream from the constriction. The continuity
norm exceeds 0.1 on the shaded elements for the
simulation of experiment S$7410235 with the
calibrated parameters ..i.eceacesesssavsecnosseneons

Part of the right half of finite-element network 2
upstream from the constriction. The continuity
norm exceeds 0.1 on the shaded elements for the
simulation of experiment S$7410235 with the
calibrated parameters .....ieiciercranrennaanranana

Part of the right half of finilte-element network 3
upstream from the constriction. The continuity
norm exceeds 0.1 on the shaded elements for the
simulation of experiment $7410235 with the
calibrated parameters ssveeseccsovssovessoooasannas

Part of the right half of finite-element network 4
upstream from the constriction. The continuity
norm exceeds 0.1 on the shaded elements for the
simulation of experiment 57410235 with the
calibrated parameters .iiiceceveesrsocacvensessaans

Observed and computed water—surface elevatlons (WSE)
for experiment $6210035, calibrated parameters,
network 1. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction ..ecviveseenens

Observed and computed water—surface elevations (WSE)
for experiment $6210035, calibrated parameters,
network 2. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction sssesssasssovess

ix

Page

128

129

129

131

132

133

134

137

137



LIST OF FIGURES (Continued)

Flgure Page

37 Observed and computed water-surface elevations (WSE)
for experiment 56210035, calibrated parameters,
network 3. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction ....eccaaeseee. 138

38 Observed and computed water—surface elevations (WSE)
for experiment $6210035, calibrated parameters,
network 4. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction ....eevaveevac. 138

39 Observed and computed veloclty components at cross
section 900 for experiment $6210035, calibrated
parameters, network 1 R IR R R R R RN ) 139

40 Observed and computed velocity components at cross
section 900 for experiment $6210035, calibrated
parameters, networkz ® 6 6 & & 4 H S bt AaE A SES I EEES 139

41 Observed and computed velocity components at cross
section 900 for experiment 56210035, calibrated
parameters, network 3 ...cceiciiiricsnanoraosanaases 140

42 Observed and computed velocity components at cross
section 900 for experiment 56210035, calibrated
parameters, nNetwork 4 ..ieecescecssnssrsscassssenss 140

43 Observed and computed velocity components at cross
section 950 for experiment $6210035, calibrated
parameters, Network l c..ciecesenrsececasvennennssss 141

44 Observed and computed velocity components at cross
section 950 for experiment S$6210035, calibrated
parameters’ networkz 40 0 2 8 ® 0 A0SR A SRS RN 141

45 Observed and computed velocity components at cross
gection 950 for experiment 56210035, calibrated
parameters, nNEtWOrk 3 c..eevieevesnescaveavovecaaas 142

46 Observed and computed veloclty components at cross
section 950 for experiment S$6210035, calibrated
parameters, Network 4 ..ieeceecusncaccassossasansns 142



LIST OF FIGURES (Continued)

Figure Page

47 Observed and computed velocity components at cross
section 1050 for experiment $6210035, calibrated
parameters, Network 1 ..ceeecaseoaccensocssosesssas 143

48 Observed and computed velocity components at cross
section 1050 for experiment $6210035, calibrated
parameters, NEetWOrk 2 ..esvevsovesaossnsscvsssossssas 143

49 Observed and computed velocity components at cross
section 1050 for experiment $6210035, calibrated
parameters, Network 3 ..iiiveecsscnnasesssansssesnss 144

50 Observed and computed veloclty components at cross
sectlion 1050 for experiment S$6210035, calibrated
parameters, network Z' L R R R R S A N I N I N I BN N N AP 144

51 Observed and computed velocity components at cross
section 1100 for experiment $6210035, calibrated
parameters, Network 1 c.iceiieieenirieennceeessnansess 145

52 Observed and computed velocity components at cross
section 1100 for experiment S$6210035, calibrated
parameters, Network 2 .....eiesarsonnsssvsassasnasas 145

53 Observed and computed velocity components at cross
section 1100 for experiment $6210035, calibrated
parameters, NEtwoTk 3 cciaereveeasssssnsssensasssss 146

54 Observed and computed velocity components at cross
sectlon 1100 for experiment 56210035, calibrated
parameters, NEtwork 4 c.ueeieeevesssaseasasnonvsacss L4O

55 Partial velocity field for experiment 56210035,
callibrated parameters, network 1. A vector 1 inch
long represents a velocity of 4 feet per second ... 148

56 Partial velocity field for experiment 56210035,
calibrated parameters, network 2. A vector 1 inch
long represents a velocity of 4 feet per second ... 149

57 Partlal velocity field for experiment $6210035,

calibrated parameters, network 3. A vector 1 inch
long represents a veloclty of 4 feet per second ... 150

xi



Figure

58

59

60

61

62

63

64

65

66

LIST OF FIGURES (Continued)

Partial velocity field for experiment S$6210035,
calibrated parameters, network 4. A vector 1 inch
long represents a velocity of 4 feet per second ...

Observed and computed water-surface elevations {(WSE)
for experiment §6810105, calibrated parameters,
network 1. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction ,...... reesnsan

Observed and computed water-surface elevations (WSE)
for experiment S6810105, calibrated parameters,
network 2. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction .ceeovevecveass

Observed and computed water—surface elevations (WSE)
for experiment 86810105, calibrated parameters,
network 3. The letters U and D refer,
respectively, to the upstream side and the
downstrean side of the constriction ,...vevveevecss

Observed and computed water—surface elevations (WSE)
for experiment S6810105, calibrated parameters,
network 4. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction seeceeessconases

Observed and computed velocity components at cross
section 900 for experiment 56810105, calibrated
parameters’ network]. @ ¢ & qa & B B o & s s b A S et ae

Observed and computed velocity components at cross
section 900 for experiment 56810105, calibrated
parameters, NEtwork 2 ..ceeeeavoreccessnoensroassos

Observed and computed velocity components at cross
section 900 for experiment S6810105, calibrated
parameters, Network 3 ..iicesscecraascascesnansanee

Observed and computed velocity components at cross

section 900 for experiment 56810105, calibrated
parameters, NEtwoTk 4 ....ievensvenanncessnccnsnnns

xii

Page

151

152

152

153

153

155

155

156

156



LIST OF FIGURES (Continued)

Figure Page

67 Observed and computed velocity components at cross
section 950 for experiment §6810105, calibrated
parameters, network 1 .c.i.eeicecasescosassensarsssees 157

68 Cbserved and computed veloclty components at cross
section 950 for experiment 56810105, calibrated
parameters, network 2 ..... caserteanens teeeenas eeees 157
69 Observed and computed velocity components at cross

section 950 for experiment $6810105, calibrated
parameters, network 3 ...iiieiieiiiiaracatresessess 158

70 Observed and computed velocity components at cross
section 950 for experiment 56810105, calilbrated
parameters, NEEWOTrK 4 c.vieeeensroecscanssssasasese 153

71 Observed and computed velocity components at cross
section 1050 for experiment S$6810105, calibrated
parameters, Network 1 ...ciiiiiiinariennanaansenass 159

72 Observed and computed velocity components at cross
section 1050 for experiment 868l0105, calibrated
parameters, NELWork 2 ..susoenseanosecsnassasssssss 159

73 Observed and computed velocity components at cross
section 1050 for experiment $6810105, calibrated
pa]ﬁametel‘s, network 3 c v s o s e ED e e eeBbes s boebstenn 160

74 Ohsevrved and computed velocity components at cross
section 1050 for experiment 86810105, calibrated
parameters, Network 4 .ceevesseeeccasssencassoasess 160

75 Obzerved and compuied velocity components at cross
fion 1100 for experiment S$6810105, calibrated
v n.etvi'io.rklQOO!lﬂﬁﬁ0"!.0‘0....'..'."'. ]_6].

76 i and computed velocity components at cross
e cn 1100 for experiment $6810105, calibrated
paranalers, Network 2 ..uieoceceascscscsscsnsssansaes 161

77 Observed and cowmputad velocity components at cross
v 110G for experiment 56810105, calibrated

- P — 3
AeLwork 3 svecenneacccucoseceasresacanss 162




LIST OF FIGURES (Continued)

Figure Page

78 Observed and computed velocity components at cross
section 1100 for experiment S$6810105, calibrated
parameters, NEtwWOork 4 ..vecescecvesrssssnssnrosssss 162

79 Partial velocity field for experiment 56810105,
calibrated parameters, network 1. A vector 1l inch
long represents a velocity of 4 feet per second ... 163

80 Partial velocity field for experiment S$6810105,
calibrated parameters, network 2. A vector 1 inch
long represents a velocity of 4 feet per second ... 164

81 Partial velocity field for experiment S6810105,
calibrated parameters, network 3. A vector 1 inch
long represents a velocity of 4 feet per second ... 165

82 Partial velocity field for experiment S6810105,
calibrated parameters, network 4. A vector 1 inch
long represents a velocity of 4 feet per second ... 166

83 Observed and computed water-surface elevations (WSE)
for experiment S$7410235, calibrated parameters,
network 1. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction «iiececsceseess 167

84 Observed and computed water-surface elevations (WSE)
for experiment S$7410235, calibrated parameters
network 2. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction sevcvvensrieees 167

85 Observed and computed water-surface elevations (WSE)
for experiment S7410235, calibrated parameters,
network 3. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction .....ccceueese. 168

86 Observed and computed water—surface elevations (WSE)
for experiment S$7410235, calibrated parameters,
network 4. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction sesvssevessasss 168

xiv



LIST OF FIGURES (Continued)

Figure Page

87 Observed and computed velocity components at cross
section 900 for experiment $7410235, calibrated
parameters, NEtWOork 1 seveeasvvronesasvsnsscsssssas 170

88 Observed and computed velocity components at cross
section 900 for experiment $7410235, calibrated
parameters, network 2 ....ciiisvscenssssocsansssnss 170

89 Observed and computed velocity components at cross
section 900 for experiment S$7410235, calibrated
parametel‘s, network 3 t e b oo s be st bobtaattabionubonoen 171

90 Observed and computed veloclty components at cross
section 900 for experiment 57410235, calibrated
parameters, Network 4 +.eseevessvesvassessessnresses 171

91 Observed and computed velocity components at cross
section 950 for experiment §7410235, calibrated
parameters, network 1 ..ccecieicecannnas ceersaensse. 172

92 Observed and computed velocity components at cross
section 950 for experiment S7410235, calibrated
parameters, Network 2 ....c.ceceevsececcanasanes P

93 Observed and computed velocity cowponents at cross
section 950 for experiment $7410235, calibrated
parameters, network 3 .....eecerctaasrrrarnsrasenaas 173

94 Observed and computed velocity components at cross
gection 950 for experiment 57410235, calibrated

parameters, NEtWork 4 c.vesreeervvocseannsarvvevens 173

95 Observed and computed veloclty components at cross
section 1050 for experiment 57410235, calibrated
parameters, Network 1 «..eveecrrrenvrascnncanasesans 174

96 Observed and computed velocity components at cross
section 1050 for experiment 57410235, calibrated
parameters, Network 2 c..eieesccccnesenssansssscasas L74

97 Observed and computed velocity components at cross
section 1050 for experiment $7410235, calibrated

parameters, network 3 ...ciieriracsernarseacnareaes 175



Figure

98

99

100

101

102

103

104

105

106

107

108

LIST OF FIGURES (Continued)

Observed and computed velocity components at cross
section 1050 for experiment S$7410235, calibrated
parameters, NEtWOrK 4 cieevseecsnvssoscccssssaonoana

Observed and computed velocity components at cross
section 1100 for experiment $7410235, calibrated
parameterS’ network 1 LA L B IR S L L L A L NN

Observed and computed velocity components at cross
section 1100 for experiment S$7410235, calibrated
parameters, NetWork 2 c.eeusvererscssrsncrvovsnssnne

Observed and computed velocity components at cross
section 1100 for experiment 57410235, calibrated
parameters, network 3 ...iciieiiaiieenan creaesraaans

Observed and computed velocity components at cross
section 1100 for experiment $7410235, calibrated
parameters, 0etwork 4 ...eiveiceeinieriienncarinnannns

Partial velocity field for experiment §7410235,
calibrated parameters, network l. A vector 1 inch
long represents a velocity of 4 feet per second ...

Partial velocity field for experiment §7410235,
calibrated parameters, network 2. A vector 1 inch
long represents a velocity of 4 feet per second ...

Partial velocity field for experiment 57410235,
calibrated parameters, network 3. A vector 1 inch
long represents a velocity of 4 feet per second ...

Partial velocity field for experiment $7410235,
calibrated parameters, network 4. A vector 1 inch
long represents a velocity of 4 feet per second ...

Observed and computed water—surface elevations (WSE)
for experiment 56210035, 3 = 1.64, network 3. The
letters U and D refer, respectively, to the
upstream side and the downstream side of the
CONSEriction ceeiecssecstosestsrecesssssscnonentcanas

Observed and computed velocity components at cross
section 900 for experiment S$6210035, B = 1.64,
R network 3 R R R R R R I T T O T T,

Page

175

176

176

177

177

178

179

180

181

183

184



Figure

109

110

111

112

113

114

115

116

117

118

LIST OF FIGURES (Continued)

Observed and coumputed velocity components at cross
section 950 for experiment S$6210035, B = 1.64,
network 3 ...... tecuresseasactnen Cecessesrarereenan

Observed and coumputed velocity components at cross
section 1050 for experiment 56210035, P = 1.64,
NEEWOTK 3 cevrnsenonseacacocensauesesrasaascanasanes

Observed and computed velocity components at cross
section 1100 for experiment 56210035, B = 1.64,
network 3 ...nieeeennn cecssessasaesssanna ceeneseeas

Partial velocity field for experiment $6210035,
B = 1.64, network 3. A vector 1 inch long
represents a velocity of 4 feet per second ........

Observed and computed water-surface elevations (WSE)
for experiment 56810105, R = 1.59, network 3. The
letters U and D refer, respectively, to the
upstream side and the downstream side of the
constriction sevevvereecsrerrrarrcrosrsrsnccasrarna-

Observed and computed velocity components at cross
section 900 for experiment S$6810105, 8 = 1.59,
network3...‘Q.0!.ll""'.l’.“"'l‘.!-."-"-.".

Observed and computed velocity components at cross
section 950 for experiment $6810105, 8 = 1.59,
network3.00‘.0.-0!.‘.0.-...00i.l.i.‘.i.ll.'.l.l"

Observed and computed veloclity components at Cross
section 1050 for experiment S6810105, g = 1.59,
network 3 ...ccccannn. cesaeaan cesecarean Cecitanons .

Observed and computed velocity components at cross
section 1100 for experiment $6810105, 3 = 1.59,
Network 3 cierveennscanas Ceseesesesasiatsaaesnanans

Partial velocity field for experiment S$6810105,

B = 1.59, network 3. A vector 1 inch long
represents a velocity of 4 feet per second ++seevee

xvii

Page

184

185

185

186

187

188

188

189

189

190



LIST OF FIGURES {Continued)

Figure Page

119 Observed and computed water—surface elevations (WSE)
for experiment 57410235, 8 = 1.48, network 3. The
letters U and D refer, respectively, to the
upstream side and the downstream side of the
CONSEYICEION svssvsseeervsnsscassssnannassnssaseans 191

120 Observed and computed velocity components at cross
section 900 for experiment S$7410235, B = 1.48,
network3.l..ll.'l.'l.l..'ll'.'...l..".'.."'.." 192

121 Observed and computed velocity components at cross
gection 950 for experiment §7410235, B = 1.48,

network3l...l.'..0......i.‘...‘lt.l...o‘ll.....ll 192

122 Observed and computed velocity components at cross
section 1050 for experiment S$7410235, B = 1.48,
NELWOTK 3 tivieieieeoansescansescencenanasaareaneaes 193

123 Observed and computed velocity components at cross
section 1100 for experiment 87410235, B = 1.48,

NEtWwork 3 tveesesearassansscsasssscsssssssnsesasesaes 193

124 Partial velocity field for experiment S7410235,
B = 1.48, network 3. A vector 1 inch long
represents a velocity of 4 feet per second ........ 19

125 Observed and computed water—-surface elevations (WSE)
for experiment $6210035, B = 1.64, Manning's n
reduced where velocitles exceed 1 foot per second,
network 3. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction ...veevevessees 196

126 Observed and computed velocity components at cross
section 900 for experiment S$6210035, B = 1.64,
Manning's n reduced where veloclties exceed
1 foot per second, network 3 c.c.vveeevncsceesnansss 197

127 Observed and computed velocity components at cross
section 950 for experiment $6210035, B = 1.64,
Manning's n reduced where velocities exceed
1 foot per second, network 3 .....iiveevnnrrssvasea 197

xviii



Figure

128

129

130

131

132

133

134

135

LIST OF FIGURES (Contlnued)

Observed and computed velocity components at cross
section 1050 for experiment $6210035, g = 1.64,
Manning's n reduced where velocities exceed
1 foot per second, network 3 «evvevenessrivnennnans

Observed and computed velocity components at cross
section 1100 for experiment S6210035, B = 1.64,
Manning*s n reduced where velocities exceed
1 foot per second, nmetwork 3 ....i.cniceiiiiiinanaa..

Partial velocity field for experiment 56210035,
B = 1.64, Manning's n reduced where velocities
exceed 1 foot per second, network 3. A vector
1 inch long represents a veloclty of 4 feet per

SECONd snsrersvoeorasrsessnesersnsrsssssnnssannssanans

Observed and computed water-surface elevations (WSE)
for experiment 56810105, g = 1.59, Manning's n
reduced where velocities exceed 1 foot per second,
network 3. The letters U and D refer,
respectively, to the upstream slide and the
downstream side of the constriction ...eeevsececacs

Observed and computed velocity components at cross
section 900 for experiment S$S6810105, 8 = 1.59,
Manning's n reduced where velocities exceed
1 foot per second, network 3 .......unciacnn ceeeren

Observed and computed velocity components at cross
section 950 for experiment S$6810105, 3 = 1.59,
Manning's n reduced where velocities exceed
1 foot per second, network 3 ...ceeveiviitssnnienne

Observed and computed velocity components at cross
section 1050 for experiment $6810105, B = 1.59,
Manning's n reduced where velocities exceed
1 foot per second, network 3 ...co.ivieacann creeean

Observed and computed velocity components at cross
section 1100 for experiment S$6810105, B = 1.59,
Manning's n reduced where velocities exceed
1 foot per second, network 3 ... iieeiisiiesieesnans

Xix

Page

198

199

200

201

201

202

202



Figure

136

137

138

139

140

141

142

143

LIST OF FIGURES (Continued)

Partial velocity field for experiment 56810105,
B = 1.59, Manning's n reduced where velocities
exceed 1 foot per second, network 3. A vector
1 inch long represents a velocity of 4 feet per

SECOMNA essvursrasvrsrrorssnscasnsnsesacsassscasssescss

Observed and computed water-surface elevations (WSE)
for experiment $7410235, g = 1.48, Manning's n
reduced where velocities exceed 1 foot per second,
network 3. The letters U and D refer,
respectively, to the upstream side and the
downstream side of the constriction ..eecevssciiase

Observed and computed velocity components at cross
section 900 for experiment $7410235, B = 1.48,
Manning's n reduced where velocities exceed
1 foot per second, network 3 ..cseiicrenirrnanans .e

Observed and computed velocity components at cross
section 950 for experiment 87410235, B = 1.48,
Manning's n reduced where velocities exceed
1 foot per second, network 3 .s..cceeccccescnaaraaes

Observed and computed velocity components at cross
section 1050 for experiment S7410235, B = 1.48,
Manning's n reduced where velocities exceed
1 foot per second, network 3 seivececsssnocnsarnons

Observed and computed velocity components at cross
section 1100 for experiment $7410235, B = 1.48,
Manning's n reduced where velocities exceed
1 foot per second, network 3 c..veeescarsccccaasass

Partial velocity field for experiment 57410235,
B = 1.48, Manning's n reduced where velocities
exceed 1 foot per second, network 3. A vector
1 inch long represents a velocity of 4 feet per

SECONA cvvrtoesnesssssocasnassssosssnsrssrsssssnesnnssnea

Observed and computed water-surface elevations (WSE)
for experiment S6210035, B = 0, network 3. The
letters U and D refer, respectively, to the
upstream side and the downstream side of the
constriction «cciessesicecsstretsaersaeccatssoaaness

XX

Page

203

204

205

205

206

206

207

210



LIST OF FIGURES (Continued)

Figure Page

144 Observed and computed velocity components at cross

section 900 for experiment $6210035, B = O,

network 3 ....nneeeaas ceenoen cereaeans ceeeseannn eee. 211
145 Observed and computed velocity components at cross

section 950 for experiment 86210035, 8 =0,

network 3 te e aasesasn R Ty 211
146 Observed and computed veloclty components at cross

section 1050 for experiment S6210035, B = 0,
networkB."l.."‘.'.....l..'l.'.l..ll..'..I.'Il.. 212

147 Observed and computed velocity components at cross
section 1100 for experiment S$6210035, B = 0,
NEtWOTK 3 tverisescnsssneronrssessssasnsoenssssssersas 212

148 Partial velocity field for experiment 56210035,
8 =0, network 3. A vector 1 inch long represents
a velocity of 4 feet per second s.vieveessnneasasss 213

149 Observed and computed water—surface elevations (WSE)
for experiment 56810105, B = O, network 3. The
letters U and D refer, respectively, to the
upstream side and the downstream side of the
CONSEYictIOon sevrevinnersasnsasassacssssnserssssnsss 214

150 Observed and computed velocity components at cross
section 900 for experiment 86810105, 8 = 0,
NELWOTK 3 surinnerrnnvnesnnssneesssssessssssassenns 215

151 Observed and computed velocity components at cross
section 950 for experiment 56810105, g = 0,
network 3 L R I I N N R R R R 215

152 Observed and computed velocity components at cross
section 1050 for experiment 56810105, B = 0,
NEEWOTK 3 cevriienesoenrostoscsoscessssasssssannnsas 216

153 Observed and computed velocity components at cross
section 1100 for experiment 56810105, B = 0,
NEtWwoTk 3 ceveniieineiesnnnncnsan cesateacans reeasaa 216

154 Partial velocity fleld for experiment S6810105,
B = 0, network 3. A vector 1 inch long represents
a velocity of 4 feet per second -vsevveeeresranvanas 217

XxXi



LIST OF FIGURES (Continued)

Figure Page

155 Observed and computed water—surface elevations (WSE)
for experiment 87410235, 8 = 0, network 3. The
letters U and D refer, respectively, to the
upstream side and the downstream side of the
CONSELICELION vesesrrocnnccnoasrossarsescssnassenans 218

156 Observed and computed velocity components at cross
gection 900 for experiment 57410235, B = 0,
network3'.I.l'..'.'..Il."l.'ll'I..'lIIl...l'll.' 219

157 Observed and computed velocity components at cross
section 950 for experiment 87410235, B = O,
NEtWOTK 3 oeeteinresotoneorssassnssasssssoanssecsssse 219

158 Observed and computed velocity components at cross
section 1050 for experiment S§7410235, B =0,
NEtWOTK 3 cuvevnnecnncnonosesacsscnsnsnonnnsasssana 220

159 Observed and computed velocity components at cross
section 1100 for experiment 57410235, B = 0,
network3.II'III.'I...I.Cl.l'l.l"'l.IlIl..I'..'l. 220

160 Partial velocity field for experiment 57410235,
B = 0, network 3. A vector 1 inch long represents
a velocity of 4 feet per second .cesveresesensssese 221

161 Finite—-element network near the I-10 crossing of the
Pearl River in southeastern Louisiana (adapted from
Wiche and others, 1982, p. 264) (cieveererenansenss 227

162 Finite-element network at a roadway embankment that
contains a culvert and is divided into weir

SEEMENLS .sessseossssocossnssncasssssaasssassvneasssse 232

163 Finite-element network at a bridge where pressure
flow within the bridge opening is modeled ......... 234

xxii



LIST OF TABLES

Table Page
1 Model features tried in FESWMS-2DH ....... Cereesearon 4
2 Parent elements and natural-coordinate shape
functions ....c.een.. cietcecsacarenans . crrcene 46
3 Summary of 1975 steady-flow experiments on flow
through contracted openings .........c.. cheesaann oo 106
4 Values of Manning's n determined in calibration of

the model for normal-flow experiments seceeveseasss 121

5 Computed discharge at the l4-foot contracted opening
for three discharges and four networks ............ 135

6 OQutline for a l-week workshop on finite-element
surface-water flow modeling uslng FESWMS-2DH ...... 242

xxiii



Symbol(s)
a

aj

(o] [¢]
i bi

s S
i» By

b

. CF

€sls Cg2

CB

LIST OF SYMBOLS

Definition

Vector of nodal values

 Approximation of solution vector a at

iteration i

Coefficients in constraint equation
(equation 97) for specified discharge
normal to an open boundary

Coefficients in constraint equation
(equation 98) for specified discharge
normal to a solid boundary

Initial estimate of solution vector a

Area of element side below water surface

Matrix defined by equation 62

Cross—-sectional area of culvert

Area of element e

Opening width at contraction

Basin width at contraction

Celerity of gravity wave, (gy)l/2

Bottom-stress coefficient

Dimensionless bed-shear—stress
coefficient

Dimensionless surface-shear—~stress
coefficient

Dimensionless coefficients in equation
for cg (equation 20)

Dimensionless coefficient in equation
for 8 (equation 13)

Dimensionless coefficient used in
equations 33, 34, and 35

xxiv



Symbol(s)

£15, o4

1 1
E1is £

F1

Fo

LIST OF SYMBOLS (Continued)

Definition

Dimensionless coefficient used in
equation 32

Chezy discharge coefficient

Dimensionless culvert discharge coefficient

Submergence coefficient for weir segment

Discharge coefficient for free flow
over weir segment

Total depth of flow down infinitely wide
inclined plane

Differential
Force or load vector

Factor to correct v o9 to vertically
averaged velocity, v

Residuals of depth-averaged equations of
motion at node i

Residuals of depth—averaged equations of
motion at node i in tangential and
normal directions, respectively

Residual of continuity equation at node 1

Froude number based on discharge

Froude number based on v 5

Gravitational acceleration

Total depth of water

Average of total depths at nodes 1l and 3

Height of grass in Flood Plain Simulation
Facility

Total depth at node i

XXV



Symbol(s)
*
Hy

Hy, Hp

Hy, H2, H3
i

Ipax

X y

LIST OF SYMBOLS (Continued)

Definition
Specified total depth at node i

Depths used to define linear dependence
of Manning's n on depth

Total depths at nodes 1, 2, 3, respectively
Summation index

Maximum number of iterations to be
performed in quasi-Newton method

Jacoblan or tangent matrix

Jacobian matrix at initial estimate of
solution vector a

Turbulent energy

Summation index

Dimensionless relative roughness

Depth-averaged turbulent eﬂergy

Coefficient matrix

Conveyance through element side

Culvert coefficient

Weir coefficient

Conveyance at nodes 1, 2, 3, respectively

Mixing length

Natural logarithm

Direction cosines between outward normal
to boundary and x- and y-directions,
respectively

Length scale

Length of culvert barrel

xxvil

Units



Symbol(s)
Ly

L,

LIST OF SYMBOLS {Contlnued)

Definition

Number of elements connected to node i

Length of weir segment

Contraction ratio, 1 - b/B

Linear shape function which has value unity
at node i and value zero at all other
nodes

Mass or capacity matrix

Manning roughness coefficient

Number of nodes associated with element

Number of interpolation functions

Manning roughness coefficient of culvert
barrel

Values of Manning's n used to define
linear dependence of n on depth

Shape function which has wvalue unity at
node 1 and value zero at all other nodes

Shape function which has value unity at
node 1 in element e and value zero at

all other nodes

Shape function which has value unity at
node 1 and value zero at all other nodes

Shape function which has value unity at
node 1 in element e and value zero at all
other nodes, used to define isoparametric
transformation

Basls function defined by equation 63

Order of

Pressure head

Unit discharge

xxvii



Symbol(s)

qxi ’ qy]'_

LIST OF SYMBOLS (Continued)

Definition

Specified unit discharges in x~ and
y-directions, respectively

Discharge
Discharge through culvert

Computed discharge through culvert at
node 1i

Normal discharge across open boundary
due to flow at node 1

Normal discharge across solid boundary
due to flow at node i

Normal discharge across open boundary
due to directly specified flow at node i

Normal discharge across solid boundary
due to directly specified flow at node i

Discharge over weir segment

Computed discharge over weir segment
associated with node 1

Discharge at cross section x in Flood
Plain Simulation Facility

Portion of total discharge through cross
section assigned to node i by procedure
discussed on pages 73 through 75

Residual load vector

Difference between search direction i and
search direction i-1

Hydraulic radius of element side
Continuity equation residual
Hydraulic radius of culvert barrel

Element surface or boundary

xxviii

L/T



Symbol(s)

<l

LIST OF SYMBOLS (Continued)

Definition

Portion of network boundary considered
to be open

Portion of network boundary considered
to be solid

Time
As supetrscript, transposition
Average flow velocity, q/y

Velocity components in the x- and
y—directions, respectively

Shear velocity for flow down infinitely

wide 1inclined plane

Approximation of variable u over element e

Velocity component in xj-direction

Value of variable u at node i of element e

Variable u at iteration n
Vector defined by equation 61

Depth—~averaged velocity components in
%- and y-directions, respectively

Bed shear velocity, Ycg U

Depth-averaged velocity components at
node i in x- and y-directions,
respectively

Specified depth—averaged velocity
components at node i in x- and y-

directions, respectively

Depth~averaged velocity component in

Xx-direction at beginning of time step

Vertically averaged velocity in Flood
Plain Simulation Facility

Xxix

Units

L/T

L/T

L/T

L/T

L/T

L/T

L/T

L/T

L/T



Symbol(s)

V.2

Wmin

(x,y)

xi

(x1,¥1)

x{®,y{®))

(Xkjs¥k3)»
(XRRJYkl)

(XI:Y1),
(X3.Y3)

(%2,¥2)

(x4,¥4)

LIST OF SYMBOLS (Continued)

Definition

Point velocity measured 0.2 of depth
below water surface

Characteristic wind velocity at reference
elevation above water surface

Wind speed below which surface-shear-
stress coefficient is constant

Distance

Cross section number in Flood Plain
Simulation Facility

Cartesian coordinates in positive east
and north directions, respectively

Cartesian coordinate 1

Coordinates of node 1 to be adjusted by
smoothing during automatic triangulation

Global coordinates of node 1 of element e

Coordinates of nodes j and £ in element k
connected to node 1

Coordinates of corner ncdes adjacent to

corner node which is to be removed during

automatic triangulation

Coordinates of vertex (corner node) to

be removed during automatic triangulation

Coordinates of new node formed during
automatic triangulation

Depth of flow
Distance above bed
Distance above bed
Bed elevation

Crest elevation of weir segment

XXX

Units

L/T

L/T

L/T

(L,L)

(L,L)

(L,L)

(L,1)

(L,L)

(L,L)

(L,L)



Symbol(s)

Z¢

e

Zinv

Bo

BUU ’ BUV ’
BVU * BVV

Aai

Aay

Aag
AH

AL

LIST OF SYBMOLS (Continued)

Definition

Ceiling elevation
Headwater energy~head elevation
Invert elevation at culvert inlet
Headwater elevation
Tailwater elevation
Coefficlent defined 1u equation 78
Momentum-correction coefficient

Dimensiounless coefficient in equation

for 8 (equation 13)

vector a

cell

Momentum—-correction coefficients

Coefficient defined by equation 79
Coefficient defined by equation 82
Coefficient defined by equation 83
Coefficient used in equations 30 and 31

Angle between positive x—-direction and
tangent to boundary at node 1

Search direction 1-1 for solution vector a

Change in solution vector a between
iteration i and iteration i+l

Search direction i for solution vector a
Initial search direction for solution
Difference between total depth at node 3
and total depth at node 1

Length of diagonal of finite—difference

XXX1

Units

L



Symbol(s)
At

Aull

Ax

me

No

ij

<?

<?

LIST OF SYMBOLS (Continued)

Definition
Time increment

Change in variable u between iteration n
and iteration ntl

Grid interval
Dissipation rate of turbulent energy

Coefficient used to control degree of
discontinuity in equation 63

Depth—averaged dissipation rate of
turbulent energy

Vorticity, defined by equation 7
Expression defined on page 74

Dimensionless expression used in table 2,
nn {

Weighting coefficient used in equation 76
Constant of von Karman

Kinematic eddy viscosity

Depth—averaged kinematic eddy viscosity

Component (i,j) of kinematic-eddy-viscosity
tensor

Minimum depth—-averaged kinematic
eddy viscosity

Base depth—averaged kinematic eddy
viscosity

Kinematic eddy viscosity in vertical
direction

Average kinematic eddy viscosity in
vertical direction

xxxii

Units



LIST OF SYMBOLS (Continued)

Symbol(s) Definition Units
sxx’ ny’ Conponents of depth-averaged-kinematic- L2/T
ny, ny eddy-viscosity tensor
(E,n) Local coordinates -
(£imy) Local coordinates of node i -
Eo Dimensionless expression used in table 2, -
£€4
o Density of water M/L3
. . 3
Pa Density of air M/L
pi Expression defined by step 4 on page 58 -—
Ot Turbulent Prandtl number -
z Summation ——
pX Summation over all elements —
e
TE, T? Components of bottom stress (friction) M/(LTZ)
in x— and y-directions, respectively
¢, & Components of ceiling stress in x— M/(LTZ)
x y . .
and y-directions, respectively
Ti, T; Components of surface stress (wind) in M/ (LT2)
x— and y-directions, respectively
Tax? Txy, Components of depth—averaged effective- M/(LTZ)
Tyxs Tyy stress tensor
¢ Latitude .
& Coefficient used in equation 17 L/T2
P Stream function, defined by equation 6 L3/T
i Angle between direction of wind and -
positive x—axis
w Magnitude of angular velocity of Earth -1
w Vorticity L/T

xxxiii



Symbol(s)
w

[T}

LIST OF SYMBOLS (Continued)

Definition
Underrelaxation factor

Weighting factor used in automatic
triangulation

Coriolis parameter, 2wsin ¢
Domain |

Partial differential
Integral

Matrix

Vec;or

Absolute value

Determinant

Square root

xxxiv



INTRODUCTION

The project "Two-Dimensional Finite-Element Hydraulic Modeling
of Bridge Crossings”™ was conducted by the U.S. Geological Survey in
cooperatlon with the Federal Highway Administration (FHWA) to
develop an accurate, efficient, easy~to-use finite—element surface=-
water flow model for use in analyzing highway crossings of rivers
and flood plains. An additional purpose was to develop a model
with capabilities greater than those of‘the two~dimensional finite-

element model developed for the FHWA in 1975 (Tseng, 1975a, 1975b).

The two—dimensional finite-element approach to the hydraulic
analysis of highway crossings of flood plains has advantages over
the more common one-dimensional analysis when lateral variations
in water—-surface elevation and flow distribution are significant.
The finite-element method is ideally suited to simulating two-
dimensional flow over complex topography having spatially variable
resistance. A two-dimensional finite-element surface-water flow
model with depth and vertically averaged velocity components as
dependent variables allows the user great flexibility in defining
geometric features such as the boundaries of a water body, channels,
islands, dikes, and embankments. The user of the model i1s able to
use a fine network in regions where geometric or flow gradients are
large and a coarse network in regions where geometry and flow are
more nearly uniform. A two-dimensional finite-element surface-water
flow model eliminates the need to use empirical coefficients other

than bottom—-resistance coefficients in simulating flow through



constrictions. 1In addition, the introduction of boundary conditions

is easily handled in the finite-element approach.

This report summarizes the work done in developing the finite-
element surface-water modeling system, FESWMS-2DH. FESWMS-2DH
consists of three programs: a data-input module, DINMOD; a hydrodynamic

flow module, FLOMOD; and an analysis—of-output module, ANOMOD.

The preprocessor, DINMOD, generates a two—dimensional finite-
element network for use by FLOMOD. 1In particular, DINMOD edits
input data, plots the finite—element network, and orders elements
to permit an efficient solution. DINMOD also is capable of automatic

network generation and refinement.

FLOMOD is capable of simulating steady or unsteady two-dimensional

flow in the horizontal plane. The vertically integrated equations

of motion and continuity are solved for the depth-averaged velocity
components and depth at the node points of the finite-element network.
The model takes into account bed friction, turbulent stresses, wind
stresses, and the Coriolis force. Flow over weirs (such as highway
embankments) and through culverts can be simulated. The effects of
vertical nonuniformity of the flow may be taken into account by the

use of momentum—correction coefficients.

The postprocessor, ANOMOD, uses output from FLOMOD to generate
plots of velocity or unit-discharge vectors and ground-surface-
elevation or water-surface—-elevation contours. ANOMOD also generates

time-history plots at node points or cross-section plots at a



specified time of wvelocity, unit discharge, or water—surface elevation.

A large number of alternative model components were tested during
the project. Also, new model features and capabilities were added

to FESWMS-2DH. These components and features are listed in table 1.

The following model components are discussed under the heading
of equation formulation in this report: conservative and
nonconservative primitive formulations, velocity and unit—-discharge
formulations, initial and boundary conditilons for primitive-equation
formulations, wave-equation and vorticity-stream—function formulations,
momentum—correction coefficients, bed shear stress, surface shear
stress, lateral stresses, weir flow and roadway overtopping, and
bridge/culvert flow. Under the heading of application of the
finite-element method to the shallow-water equations are discussed
interpolation functions and elements, solution methods, numerical
integration, the solution of nonlinear algebraic equations, the
solution of linear algebraic equations, and the finite-element
equations. The following features of the modeling system FESWMS-2DH
are discussed: the graphic output standard, the data input medule
DINMOD (error checking, automatic network generation, network
refinement, and element resequencing), the depth—averaged flow
module FLOMOD {error checking, automatic boundary adjustment, and

the continulty norm), and the output analysis module ANOMOD.

Sections of the report are devoted to the application of

FESWMS—2DH to data from the Geological Survey's Flood Plain Simulation



Table 1. Model features tried in FESWMS-2DH.

Model feature

Tried

Used

Not used

Conservative formulation
Nonconservative formulation
Velocity formulation
Unit-discharge formulation
Wave—equation formulation
Vorticity-stream-function formulation
Momentum—correction coefficients
Bed shear stress
Chezy discharge coefficient
Manning's roughness coefficient
Bed—-slope correction factor
Variation with flow depth
Surface shear stress
Lateral stresses
Constant eddy viscosity

Eddy viscosity function of
frictlon velocity

k- model
Welr flow (roadway overtopping)
Bridge/culvert flow
One~dimensional

Two—dimensional



Table 1. Model features tried in FESWMS-2DH (continued).

Model feature

Tried

Used

Not used

Element types
Six-node triangles
Eight-node quadrilaterals
Nine-node quadrilaterals
Curved-sided elements
Solution methods
Mixed interpolation
Wave~equation approach
Dissipative Galerkin approach
Numerical integration
Gaussian quadrature
Nodal integration

Solution of nonlinear algebraic
equations

Newton iteration

Quasi-Newton iteration

Solution of linear algebraic equations

Banded-storage scheme

Partitioned-block skyline-storage

scheme
Frontal scheme

Conjugate-gradient scheme



Table 1. Model features tried in FESWMS-2DH (continued).

Model feature Tried Used Not used

Finite—element expressions for residuals

Integration by parts of convective x x
terms
Integration by parts of pressure x x
terms

Boundary and special conditions

Essential depth boundary X x
conditions
Natural depth boundary conditions X X
Essential velocity boundary . X X
conditions
Essential unit-discharge X x

boundary conditions

Distribution of total discharge x x
on basis of conveyance

Slip boundary conditions X X
No-slip boundary conditions X X
Correct computation of zero normal x X
discharge at solid boundaries
without smooth boundaries
GKS graphics _ X x
DINMOD features
Inch-pound or metric units X X
Extensive checking of input data b x
Interpolation of nodal coordinates x x
along straight line segments
Automatic network generation X X



Table 1. Model features tried in FESWMS-2DH {(continued).

Model feature Tried Used Not used
Automatic network refiuement x x
Element resequencing by the X %

minimum frontgrowth method

Element resequencing by the x x
level=-structure method

Plotting of network and ground- X X
surface—elevation contours

FLOMOD features

Inch-pound or metriec units X x
Extensive checking of input data X X
Automatic adjustment of network X x
boundary

Computation of flow across x x

specified cross sections
Computation of continuity norms X X

ANOMOD features

Inch-pound or metric units X X
Extensive checking of input data S X
Plotting of finite-element network X X
Plotting of velocity or unit- X x

discharge vectors

Plotting of ground-surface- X x
elevation contours

Plotting of water—-surface-— X X
elevation contours

Plotting of flow—check lines x x



Table 1. Model features tried in FESWMS~2DH (continued).

Model feature

Tried

Used

Not used

Plotting of time~histories
Plotting of contours of
differences of water-surface

elevations

Plotting of data at cross sections




Facility, the use and calibration of FESWMS-2DH (data collection
and analysis, network design, and model adjustment, including
calibration), and the use of FESWMS-2DH by the highway industry
(operational potential of FESWMS—-2DH, training, future possible
improvements to FESWMS-2DH, and software maintenance). References

are given in a final section.

A list of factors for converting inch-pound units to metric
units is provided at the front of the report. 1In this report,
“sea level"” refers to the National Geodetic Vertical Datum of 1929
(NGVD of 1929)--a geodetic datum ‘derived from a general adjustment
of the first-order level nets of both the United States and Canada,
formerly called "Mean Sea Level of 1929." The use of brand names
in this report 1s for identification purposes only and does not
imply endorsement by the Federal Highway Administration or the

Geological Survey.



EQUATION FORMULATION

Several related sets of equations can be used to describe
steady and unsteady two—dimensional surface-water flow in the

horizontal plane.

We discuss below several formulations of the flow equations
considered quring this study. These include the primitive shallow-
water equatiouns in conservative and nonconservative form, velocity
and unit-discharge formulations, a wave—equation formulation, and

a vorticity-stream-function formulation.

Conservative and Nonconservative Primitive Formulations

The equations of two-dimensional surface-water flow in the
horizontal plane consist of three nonlinear partlal-differential

equations. 1In conservative form, the equations of motion in the

%~ and y-directions are (Pinder and Gray, 1977, p. 262-269)

3 3 3 dz, g 3H
— (HU) + — (B, HUU) + — (B yHUV) + g — + = — - Quv
ot ax dy X 2 9%
1 b 0 3
- - 8 o - =
+ Te = Ty (Ht ) (HTxy) =0 (1)
p ax
and
3 5 3 8z, g oH’
— (HV) + — (By dHVU) + — (ByyHVV) + g — + - — + QHU
3t 5% 3y 3y 2 ay
1 b a d
+ - - -— - — (F =
Ty T (HTyx) (iTyy) o, (2)
) d 3y



respectively, and the continuity equation is

where X, ¥

U, v

H
Buus Buvs Bvus Byv
Zp

P

oH

at

0 3
+ == (HU) + — (HV) = O , (3
ax 0y

Cartesian coordinates in the positive east and
north directions, respectively,

time,

depth—avefaged veloclty components in the x-
and y-directions, respectively,

total depth of water,

momentum—correction coefficients,

bed elevation,

density of water (assumed constant),

2wsin ¢ = Coriolis parameter,

magnitude of the angular velocity of the Earth,
latitude,

gravitational acceleration,

components of depth—averaged effective-stress
tensor,

comnponents of surface stress (wind) in the x-
and y—directions, respectively, aund

components of bottom stress (friction) in the

¥~ and y—-directions, respectively.

Equations 1 through 3 are commonly referred to as the shallow—

water equations, and the formulation given in equations 1 through 3
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is called the primitive formulation. These equations are obtained

from the three-dimensional Reynolds equations for turbulent flow
by integrating with respect to the water depth under the assumption
of hydrostatic pressure and by making simplifying assumptions

regarding the nonlinear terms.

The first three terms of equations 1 and 2 are inertial-force
terms, the first of the three representing temporal acceleration
and the second and third representing convective acceleration.
The momentum—correction coefficients result from the vertical
integration of the equations of ﬁotion and account for the fact
that when fhe vertical veiocity profile is not uniform, the integral
of the product of two velocity profiles is not equal to the product
of the integrals. The fourth and fifth terms represent the pressure
force due to the water—surface gradient. The sixth term represents
the Coriolis force, an inertial force representing the effect of
the Earth's rotation. The seventh and eighth terms in equations 1

and 2 represent bottom and surface stresses, respectively.

The ninth and tenth terms represent the combined effect of
viscous stresses énd Reynolds stresses. Many authors.assume that
the values of the momentum—correction coefficlents are unity and
include the effect of momentum transfers due to the vertical velocity
distribution in these effective-stress terms (Wang and Connor, 1975,
p. 64; Lean and Weare, 1979, p- 18). Some authors (Pritchard, 1971,
p. 30-32; Schaffranek, 1976, p. 51) ignore the Reynolds—stress terms

and handle the effect of the vertical velocity shear in the depth-

12



averaged equations by using values of the momentum—correction

coefficients which are greater than unity.

Many authors express the effective stresses in terms of the
mean-flow variables by using Boussinesq's eddy-viscosity concept,
which assumes that momentum transfers due to turbulence and, possibly,
the vertical nonuniformity of velocity are proportional to the
mean-velocity gradients. The coefficients of proportionality are

called eddy viscosities.

Equation 3 states that the change in storage in an infinitesimally
small control volume accounts for the net flux of mass intoc or out

of the control volume.

Equations 1 and 2 may be converted to nonconservative form by

the use of equation 3 and the assumption that the values of the

momentum—-correction coefficients are unity:

3U au au 3H dzy,
—+U0—+V—+g—+g—-Q
at X ay ax ox
1 [3 3 b
- ETg) bl )ty m Ty | =0 (4)
pH| 9x 9y
and
v v av 9H 3zy
— 4+ U —+V—+g—+5g—+QU
It 3x dy dy 3y
1[5 ) b
- = | = Gl + — (Hry) + r; -ty =0. (5)
pH | 9x Iy
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The systems of equations 1, 2, and 3, and 4, 5, and 3 were both
tested in the flow model, FLOMOD. The first system was found to
give slightly better results and is used in the final version of

FLOMOD.

Velocity and Unit-~Discharge Formulations

A variant of the primitive shallow-water equations based on
unit discharges is used by Norton and King (1973), Norton and
others (1973), King and Norton (1978), and Withum and others (1979).
The dependent variables are the unit discharges, UH and VH, and the
depth, H. King and Norton (1978, p. 2.82) state that the advantages
of this formulation include ease of representation of discharge
boundary conditions and linearization of the continuity equation.
Withum and others (1979, p. 703) mention the ease of ensuring
the continuity of mass and momentum transfer across interelement
boundaries. In general, the use of the dependent variables that
vary the least spatially gives the best approximation. Thus, it
has been observed by Teeter and McAnally (1981, p. 255) and the
writers that a finite-element model using the unit-discharge
formulation is much more sensitive to cross-channel depth changes
and low eddy-viscosity values than a finite-element model formulated
in terms of velocitles. In a model with velocities as dependent
variables, unit-discharge boundary conditicns are easily handled
at discharge boundaries by incorporating the equations UH = constant
and VH = constant into the process for handling the nonlinearities

of the equations. On the basis of these observations and extensive
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numerical tests, the velocity formulation was selected as preferable
to the unit-discharge formulation for river—-flood-plain modeling

and is used in FLOMOD.

Initial and Boundary Conditions for Primitive-Equation Formulations

Both initial and boundary conditions must be specified to solve
the unsteady shallow-water equations. To obtain a solution to the
unsteady equations, both the water depth and the depth—averaged x-
and y-velocity components must be specified as initial conditions
throughout the entire solution region. Boundary conditions must
be specified around the entire boundary for the duration of the
simulation. The required boundary information depends on the type
of boundary and the flow condition. Two types of boundaries are
commonly encountered in surface-water flow problems: the solid,

or no-flux, boundary and the open boundary.

Solid boundaries define geometric features such as natural
shorelines, highway embankments, jetties, or seawalls. The flow
across such houndaries generally must equal zero. In addition,
either the tangential velocity or tangential stress must be
specified. At open boundaries, flow is allowed to enter or leave
the system. Open boundaries usually represent rivers flowing into
or out of the area under study or a connection with an open water

body such as a lake, bay, or ocean.

For subcritical flow conditions at an open boundary, either

the unit discharge (or velocity) normal to the boundary or the
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water depth (normal stress), in addition to either the tangential
unit discharge {or velocity) or the tangential (shear) stress, must
be specified. When the Coriolis term is significant in tidal
applications, problems can arise by specifying water—-surface
elevations across an open boundary. Walters and Cheng (1980,

p. 192, 193) and Jamart and Winter (1982, p. 168-172) solve this
problem by specifying water-surface elevation at only one point on
the open boundary and the direction of the velocity across the
entire open boundary. For supercritical flow conditions at an
open boundary, both the normal unit discharge (or velocity) and
depth must be specified on inflow boundaries along with either the
tangential unit discharge (or velocity) or the tangential (shear)
stress; on outflow boundaries, only the tangential (shear) stress

must be specified.

In FLOMOD, tangential (shear) stresses along open boundaries
are assumed to equal zero. Along solid boundaries, either tangential
stresses are assumed to equal zero (a slip condition) or the velocity
is set to zero (a no-slip condition). When a slip condition is
specified along solid boundaries, velocitles at boundary nodes are
adjusted so that there is zero net flow across the boundary. When
a ﬁo-slip condition is prescribed, the requirement of zero flow

across the boundary is automatically satisfied.

In modeling subcritical riverine flows, the x— and y-direction
unit discharges are usually prescribed at inflow boundaries and the

water—surface elevation (from which depth is determined by subtracting
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the ground—-surface elevation) 1s prescribed at outflow boundaries.
Velocity components may also be specified at inflow boundaries. A

slip condition is generally prescribed along all solid boundaries.

Wave—-Equation and Vorticity-Stream—Function Formulations

Another variaat of the system of equations 1 through 3 involves
replacing the primitive continuity equation by a wave continuity
equation. The reasons for doing this and the numerical results
obtained by using wave~equation schemes are discussed on pages 51

through 53.

In the case of steady flow, 1t is possihble to apply a vorticity=-
stream—function approach to two-dimensional surface-water flow. This
is of considerable interest because it is possible to handle as
steady state most problems involving flood-plain constrictions.
Franques (1971) and Franques and Yannitell (1974) develop such an
approach. They deflne the stream function, ¥, by

Y Y

— = = HV and — = HU (6)
ax ay

and the vorticity, Z, by

3 8
¢ = =— (HU) = — (HV) . (7)
ay Ix

By neglecting the convective term in the vorticity—-transport equation,

the authors obtain a nonlinear elliptic partial-differential equation
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in ¥. Boundary conditions consist of constant values of ¥} at

solld boundaries and zero values of the normal derivative of  at
inflow and outflow boundaries, which are assumed to be normal to
the flow. Water—-surface elevations are obtained from Bernoulli's

equation.

Neglecting the convective term in the vorticlty-transport
equation 1s equivalent to neglecting the convective terms 1in the
primitive equations of motion. In modeling constricted flow in
the Flood Plain Simulgtion Facility, it was found that neglecting
the convective terms in the equations of motion caused significant
underestimation of backwater. In addition, the jet and recirculation
zones downstream from the constriction do mot appear when the

convective terms are omitted.

Momentum-Correction Coefficients

The momentum—correction coefficients (Byy,, Byvs Byus Byy) result
from the vertical integration of the equations of motion and account
for the fact that when the vertical velocity profile is not uniform,
the integral of the product of the two velocity profiles 1s not equal
to the product of the integralsﬂ The momentum-correction coefficients

are defined as

1 zpHi
Buy = — f uu dz , (8)
HUU  zy
1 Zb+H
Buy = Byy = — [ uvdz, (9)
HUV  zp
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and

1 ZptH
Byy = — [  wv dz , (10)
HVV zy
in which u and v are the velocity components in the x- and y-

directions, respectively. These coefficients depend on the velocity

profile and are often assumed to equal unity.

If it 1s assumed that the velocity profile in the vertical
plane can be approximately represented by the logarithmic distribution
U

— &n(z-z}) + constant , (11)
K

u

in which Ux is the bed shear velocity equal to /EE U, cfg is a
dimensionless coefficient (see p. 20), and ¥ is von Karman's constant,
the resulting momentum—correction coefficients are all equal and

are given by
B =1+ cp/e? . (12)
The momentum-correction coefficient in FLOMOD 1s computed as
B =By t+ cger . (13)

1/(2.

Equations 12 and 13 are equivalent when 8 = 1.0 and Cg

)
The coefficient x has been found to equal approximately 0.4, from
which cg = 6.25. Thus, 1f ce = 0(10-3), the correction B - 1

= 0(1072). A constant correction factor can be specified by
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setting By equal to the desired value and setting cg equal to zero.
The default values in FLOMOD for B, and cg are 1.0 and 0.0,
respectively. Acceptance of these default values by the user

means that the effect of any vertical nonuniformities in velocity

are ignored.

Bed Shear Stress

The directional components of the bed shear stress are given by

2 = peu? +vHY2Z 1+ (32 /002 + (3zy/3y)2]1/2 (14)
and
b = pegv? + vHMZ 1+ (a2 /am? + Gz /op21 2, as)

in which c§ 1s a dimensionless coefficient and the square-root terms

involving 9zp/3x and 3zp/3y account for the effect of a sloping bed.

The bed-shear—-stress coefficient, cf, is computed as either

g
Cg = — (16)
C2
or
gn?
cf = ) (17)
¢H1/3

where C is the Chezy discharge coefficient, n is the Manning

roughness coefficient, and ¢ 1s a factor that equals 2.208 when
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inch-pound units are being used and 1.0 when metric units are being

used.

Manning roughness coefficients can be varied with depth of flow
in FLOMOD. This feature 1is especially important when modeling
flows through densely vegetated areas on river flood plains. In
such areas the roughness coefficlents may either increase or decrease
with the depth of flow depending on the ground cover and the type
and density of vegetation. Chezy coefficients, on the other hand,

are assumed in FLOMOD to remain constant for all flow depths.

Values of the Chezy discharge coefficient and the Manning
roughness coefflcient for natural and manmade channels as well as
flood plains are available in a number of references, such as Chow
{(1959), Barnes (1967), and Arcement and Schneider (1984). These
estimates, however, have been determined under the assumption of
one~dimensional flow and implicitly account for the effects of
turbulence and deviations from a constant cross—sectional velocity.
Since the depth—averaged flow model takes into account the horizontal
variation in velocity and considers independently the effect of
turbulence, values of c§ computed using coefficients based on one-
dimensional-flow assumptions may be somewhat larger than they
actually should be (Lee and others, 1983, p. 30-31). Since little
information is available on choosing coefficients for purely depth-
averaged flows, the user must estimate Chezy or Manning coefficients

as best he can on the basis of available references and experience.
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Surface Shear Stress

The directional components of the surface shear stress due to

wind are given by

s _ 2
Ty = cgp Wcos ¢ (18)
and
8 =cp wzsin v (19)
y s”a '

in which ¢g 1s a dimensionless surface-stress coefficient, p, 1Is
the density of the air, W is a characteristic wind velocity at a
reference elevation above the water surface, and § is the angle

between the direction of the wind and the positive x—axis.

The surface-stress coefficient, cg, has been found generally

to be a function of wind speed and is computed as

Cg1 ¥ 10—3, for W less than or equal to W_; ., and
cg = 3 (20)
lcg t csz(w-wmin)] x 10 7, for W greater than W ;_ -
For wind speed in meters per second measured 10 meters above the
water surface, Garratt (1977) concludes that cgy = 1.0 and
cg2 = 0.067 with Wpy, = 4.0 m/s. Wang and Connor (1975, p. 61)
compare several relations for cg as a function of wind speed and

decide that cg] = 1.1 and cgg = 0.0536 with Wi, = 0.0 m/s. Hicks

(1972) finds that cgy = 1.0 and cgp = 0.05 with Wyq, = 5.0 m/s.
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It must be remembered, however, that factors other than wind
velocity may influeuce the value of the surface-stress coefficient.
For example, Hicks and others (1974) show that as water becomes
very shallow, less than 2.5 m deep, long period waves are not able
to fully develop and the water surface is smoother. Under these
conditions, the value of the surface-stress coefficient remains
close to 1.0 x 1073 for all wind speeds. Stratification of the air

also effectively reduces the value of the surface-~stress coefficient.

Equation 20 is used to compute the surface~stress coefficient
in FLOMOD. The coefficients cgq and cgn are supplied by the user.

The default values are 1.0 and 0.0, respectively.

Lateral Stresses

The lateral stress terms (Tyx, Txy, Tyxs Tyy) that appear in the
depth-averaged equations of motion include contributions from viscous
stresses and turbulent stresses. Viscous stresses are typically
quite small in comparison with turbulent stresses and may be safely
neglected. Diffusive momentum transport supplied by the lateral
stresses is an important factor in inducing horizontal circulation
of steady flow. In fact, some writers claim that circulating flow
driven by the main flow cannot exist when the lateral stresses are
neglected (Flokstra, 1977). Therefore, although cases may exist
where lateral stresses may be neglected, in general they are an

important feature of:depth—averaged flow computations.
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Eddy Viscosities

The oldest proposal for modeling the turbulent stresses in the
three-dimensional equations of motion was formulated in 1877 by
Boussinesq (Schlichting, 1968, p. 544), who assumed the turbulent
stresses to be proportional to the gradients of the time-mean
velocities. This concept has been extended to the depth—averaged

equations of motion to compute the lateral stresses due to turbulence as

au :a1)
Tyux = pvxx( _—t — ) . (21)
ax ox
( a2l ERY
Ty, = Ty, = PV —_+ — ) , (22)
Xy yx S\ oy ax
and
av avVv
Tyy = pvyy( —_t+ — ) R (23)
ay 3y
in which v

and syy are directional values of the eddy
viscosity. Although not truly depth-averaged quantities in a
mathematical sense, these eddy-viscosity coefficlents are defined
in such a way that they yield the proper depth—averaged turbulent

stresses.

Equations 21 through 23 are used to evaluate the turbulent
stresses In FLOMOD. Because of the difficulty in determining these

directional components, the depth-averaged kinematic eddy viscosity
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~

used in FLOMOD is assumed to be isotropic (that is, Gxx = Vyy

= ny) and is denoted by v
Turbulence Models

Unlike the coefficient of molecular viscosity, the eddy-
viscosity coefficients are not solely a property of the fluid but
depend also on the state of turbulent motion and therefore may
vary significantly from one point to another in the flow or with
time. If not computed from another, more advanced, model of
turbulence, the values of the eddy viscosities must be obtained by

measurement or estimated on the basis of experience.

In order to advance the eddy-viscosity concept initiated by
Boussinesq, it is necessary to find relations describing the
distribution of the eddy viscosity. The first such model was
gsuggested by Prandtl in 1925 (Schlichting, 1968, p. 546-549) and
is known as the Prandtl mixing-length hypothesis. By assuming
that eddies move around in a fluid very much like molecules in a
gas, an expression for two—-dimensional shear-layer flows was
developed which relates the kinematic eddy viscosity to the local

mean—-velocity gradient by
v =22 — (24)

where u is the time-averaged velocity in the x—-coordinate direction

and &, 1s defined as the mixing length. The mixing length is roughly
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analogous to the mean free path of a molecule in the kinetic theory
of gases. A result similar to equation 24 was obtained earlier by
G. I. Taylor (Schlichting, 1968, p. 550) on the basis of his vorticity-

transport theory.

The mixing length is a function of position because it depends
on the state of turbulence. Von Karman (Schlichting, 1968,
p. 551-553) attempted to relate %, to the mean-velocity profile
by the equation
du/dy
Ry = K | =—=——1] , (25)
d2u/dy2
in which « is a universal constant. Experiments have shown that
is not a universal constant but may vary considerably, having an
average value of about 0.4. Other investigators have proposed
relationships describing the distribution of the mixing length for
particular types of flow. However, for flows in general the wmixing-

length formulation is of restricted usefulness.

The mixing~length hypothesis may be extended to general flows
(Rodi, 1980a, p. 18) in the form
2 Bui Buj duy 1/2
BXj Ixy axj
where the nonisotropic kinematic eddy viscosity is a function of &,
and the mean-velocity gradients. But this formulation as well has

been used infrequently because of the difficulty in specifying iy

26



for flows that are more complex than shear layers.

Von Karman's expression for the mixing length in equation 25
may be used to derive the well-known logarithmic velocity distribution.
On the basis of this velocity distribution, Elder (1959) considered
a flow down an infinitely wide inclined plane and derived the

expression
y y
wWo= ¢ - (1 - - )du* (27)

for the vertical eddy viscosity, vY, where « is von Karman's
constant, y is the vertical distance from the plane's surface, d
is the total depth of flow, and u* is the shear velocity. Averaging

over the depth and taking « equal to 0.4 leads to the expression
IV = 0.067du* (28)

for the average kinematic eddy viscosity in the vertical direction.
Experiments have shown that a similar relation exists for the
transverse mixing of momentum. Values of 5/(otdu*) in straight
uniform channels (where o is the turbulent Prandtl number) are
found to generally fall between 0.1 and 0.2 (Fischer and others,
1979, p. 107-112), while curves and sidewall irregularities increase
the coefficient such that values of U/(otdu*) in natural streams

hardly ever fall below 0.4. For practical purposes,

G/(otdu*) = 0.6 + 0.3 . (29)
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Higher values are likely if the channel has sharp curves or rapid
changes in geometry. Lean and Weare (1979) use such a formulation
to determine the depth—averaged horizontal eddy viscosity in a
finite-difference model of two-dimensional, horizontal flow in a
rectangular channel. A similar relation is used by Falconer (1980)
in a finite—differencelmodel study of tide~induced circulatory

velocity flelds within narrow—entranced harbors and estuaries.

Horlzontal-eddy—-viscosity coefficients based on the theory of
two-dimensional flow (Kraichnan, 1967; Leith, 1968) are used by
Haney and Wright (1975) in a barotropic model of wind-driven circulation
in a closed, rectangular basin. Two—dimensional turbulence has
the property that the enstrophy (defined as one—~half of the square
vorticity) cascades from larger scales to smaller scales. To
dissipate local enstrophy in the model, Haney and Wright introduce

a nonlinear eddy viscosity of the form

3wy 2 w27 1/2
V=3, 1+Y(—) +(-—) ax3 b, (30
' ox ay
where Go and Y are constants, w is the vorticity, and Ax is the
finite-difference grid interval. The eddy viscosity, ¥V, is a
monotonically increasing function of the magnitude of the vorticity

gradient computed on the grid, V. is the minimum value of V,

o
and y determines the variation of V. Leendertse and Liu (1977)

adopt a similar model for the eddy viscosity, which is written as
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3w W
Vo=y| — +— a3, (31)
ax oy

where A2 = (4x2 + Ay2)1/2 in which Ax and Ay are the finite-difference

grid intervals in the x- and y-coordinate directions, respectively.

One of the main shortcomings of all the previously mentioned
models, as pointed out by Rodl (1982, p. 45), is that they are based
on the implied assumption that turbulence is in local equilibrium,
which means that at each point in the flow, turbulent energy or
enstrophy is dissipated at the same rate at which it is produced.
Consequently, there is no influence of turbulence production at
other points or at other times; the eddy viscosity will be computed

to be zero whenever the velocity gradients are zero.

In order to account for transport and history effects, turbulence
models have been proposed which employ transport equations for the
turbulence quantities in three-dimensional flows. The simplest of

these are referred to as one—equation models. One such group of

models expresses the eddy-~viscosity coefficient as a function of

the locally avallable turbulent energy, k, and a length scale, L,
characteristic of the turbulent flow. The governing system of
equations is closed by introducing an expression for the transport
of k and by specifying the distribution of L. The eddy viscosity is

then computed as

v = ¢)/kL , (32)
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where cﬁ is an empirical constant. This formula is known as the
Kolmogorov-Prandtl expression {(Rodi, 1980a, p. 21) and relates the
eddy viscosity to the velocity scale, vk, and the length scale, L,
of large-scale turbulent motion. As with the mixing—length model,
the length scale must be empirically determined. Examples of
various algebraic expressions for the length scale are given by

Launder and Spalding (1972, p. 71-89).

One-equation models which do not make use of the eddy-viscosity
concept have been devised. Brédshaw and others (1967) solve a
differential equation describing the transport of turbulent shear
stress in boundary-layer flows. While fhis equation frees the
shear stress from the local mean-velocity gradient, it still requires
the specification of a turbulence length scale. Nee and Kovasznay
(1969) propose an equation which directly describes the transport of
the kinematic eddy viscosity. As in the other one-equatlon models
that have been discussed, a length-scale distribution must still

be prescribed.

One-equation models of turbulence have been found to yield
acceptable results in turbulent~flow computations, provided that a
precise algebraic prescription of the length scale is available.

This can rarely be done for any but boundary-layer flows, and,
therefore, Prandtl's mixing=-length model may often give as good an
account of turbulent fluid motion at a much lower cost. The difficulty
in finding widely valid equations for calculating the length scale

has led to the development of models in which transport effects on
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the turbulence length scale are also considered. These two—equation

models have shown great promise in the fields of mechanical and
aerospace engineering and have recently been used in simulating

open—channel flow.

Several two—equation models using vafious dependent variables
have been presented in the literature and are reviewed by Launder
and Spalding (1972, 1974), Reynolds (1976}, and Rodi (1980a, 1980b).
In his state-of-the-art review, Rodi (1980a, p. 33) concludes that
the two-equation model in which the dependent variables are the
turbulent energy, k, and the dissipation rate of turbulent energy, ¢,
is perhaps the most universal and is well suited for appliéation to
hydraulic flow problems. Since, by dimensional reasconing, the
dissipation rate, e, 1Is proportional to k3/4/L, the parameter pair k-¢
is equivalent to the pair k-L. Once the parameters k and € have
been computed, the kinematic eddy viscosity can be found (again by

dimensional reasoning) as
V =gy T, (33)

where ¢ is an empirically derived constant. The distribution of
the parametetrs k and €, and thus v, over the flow field is computed
by solving the transport equations for these variables simultaneously

with those governing the mean-flow behavior.

McGuirk and Rodi (1978) use the k-e model in calculating

depth—averaged open channel flow and transport. Rastogi and Rodi
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{1978) use the k~e model to simulate both three-dimensional and
depth-averaged flow and transport in open channels. Leschziner

and Rodi (1979) use the k-e turbulence model in computing three-
dimensional flow in strongly-curved open channels. In adapting the
k-c model for use in computing depth-averaged open-channel flow,
McGuirk and Rodi (1978) and Rastogl and Rodi (1978) assume that

the local depth—averaged state of turbulence can be characterized
by the turbulent energy, i, and the dissipation rate, &, and that

the eddy viscosity, V, used in calculating the depth-averaged

turbulent stresses is related to these parameters by
v=c¢c —, {34)

where, as before, cy is an empirical constant. Terms are also
added to the tramsport equations to account for the production and

dissipation of turbulence by bottom shear stresses.
Turbulence Models in FLOMOD

The turbulence model used in FLOMOD is based on equation 29 and
therefore assumes that turbulence 1s in local equilibrium (that is,
turbulent energy is dissipated at the same rate at which it is
produced). Under the assumption that the turbulent exchange of
mass and momentum are analogous, the kinematic eddy viscosity in

FLOMOD is computed as

J = 30 + o UsH (35)
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in which Uy = /E; U and <, is a coefficient. With Go =0 in
equation 35, the depth—averaged kinematic eddy viscosity with
¢y = 0.6 + 0.3 may not be large enough in some cases to ensure
computational stability. Therefore, a base kinematic eddy viscosity,
Go’ is included in the formulation to provide a means of increasing

the eddy viscosity to a level that will provide a convergent solution.

A constant value of V can also be specified by setting c, = 0 and

Vo Z_O.

A depth—-averaged k—e turbulence model was added to FLOMOD, and
flows in curved channels and a reach of the Kankakee River were
simulated. The variation of depth—averaged velocity across the
channel was simulated much better by using the k—e model than by

using a constant eddy viscosity.

The k-t model requires the solution of two additional equations
at each node point (one for the transport of turbulent energy, k, and
the other for the transport of the dissipation rate of turbulent energy,
€). The resulting system of nonlinear equations was quite difficult
to solve. An underrelaxation factor, w, of 0.1 was used such that

at the end of the (otl)st iteration, the new value of a solution

variable, u, was computed as u™! = yo + pAu?, where Aul = u®l - yn,
The solution converged quite slowly in all cases. 1In addition,
boundary and initial conditions had a substantial effect on solution

convergence.
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Although the k—c model provided good results, the difficulty
and cost of obtaining a solution must be considered. FESWMS-2DH
has been developed primarily to solve complicated hydraulic problems
at bridge crossings. These problems generally do not require extremely
accurate simulations of velocity distributions in river channels
and through bridge openings. For this reason, the depth-averaged
k-e turbulence model has not been included in FLOMOD. Use of a
constant kinematic eddy viscosity or the kinematic eddy viscosity
model given by equation 35 has been found to provide excellent
solutions to the types of problems for which the modeling system

has been developed.

Welr Flow and Roadway Overtopping

Because of the assumptions made in the depth-averaging process,
equations 1, 2, and 3 cannot accurately simulate flow over weirs.
Instead, flow over weirs or weir-type structures, such as roadway
embankments, 1s computed in & one—dimensional sense by dividing
such structures into weir segments, each of which connects two boundary
nodes (one on either side of the weir) or allows flow to exit the
system at a single boundary node. Flow over each weir segment is

computed as
QQ = Kw(zg - zc)3/2 > (36)

in which K is a welr coefficient, zg is the headwater eﬁergy—head
elevation, and z. is the crest elevation of the weir segment

(assumed constant along the segment). The welr coefficient is
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computed as
Ky = CoubCylw/E » (37)

in which C,; is a discharge coefficient for free flow over the weir
segment, Cguy, is a coefficient that adjusts for submergence of the
welr segment by tailwater, and L, is the length of the weir segment.

The submergence coefficient, Cgq4}, is automatically determined.

Headwater and tailwater elevations are taken from the two
boundary nodes connected by the weir with the higher elevation
being that of headwater and the lower elevation that of tailwater.
Flow is assumed to leave the system at the headwater boundary ncde
and to re—enter the system at the tallwater boundary node. When
only one node is connected to the weir segment, free flow is assumed

and exits the system at the boundary node.

Bridge/Culvert Flow

Flows through bridges and culverts can be modeled as either
one- or two—dimensional flow. If the bridge or culvert is small
in relation to the channel or flcod plain, it may be more appropriate
to model the structure in a one-dimensional sense. If the bridge
1s very wide with substantial variations in water—-surface elevations
across the opening, or large lateral velocities, or both, a two-

dimensional approach 1s probably warranted.
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One-Dimensional Bridge/Culvert Flow

One-dimensional flow through a small bridge or a culvert is
computed using an empirical equation developed for flow through
culverts. Each culvert is defined by its physical characteristics
and a set of empirical_coefficients and is considered either to
connect two boundary nodes of the finite-element network or to allow

flow to exit the system at a single boundary ncde.

Discharge through a culvert is computed under the assumption of
either type 4 or type 5 flow as described by Bodhaine (1968). 1In
type 4 flow, the culvert is submerged by both headwater and tailwater.
In type 5 flow (inlet control), the top edge of the culvert entrance
contracts the flow in a manner similar to a sluice gate, and the
culvert barrel flows partly full at a depth less than critical.

The culvert discharge is computed as

Kc(zg - zg)llz, for type 4 flow, and

Qe = (38)

K (zg - 1/2, for type 5 flow,

c Zjiav)

in which K, is a culvert coefficient that depends on the type of

flow, zg is the headwater elevation, zg is the tailwater elevation,
and zi,y 18 the invert elevation at the culvert inlet. For type 4

flow,

1/2

¢ =2 2.2
K, = CoA, 29 cinlL, , (39)

R 473
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in which C, is the culvert discharge coefficient, A, is the cross-

sectional area of the culvert, n. is the Manning roughness coefficient

c
of the culvert barrel, L. is the length of the culvert barrel, and
Re. is the hydraulic radius of the culvert barrel. For type 5 flow,

the culvert coefficlent is computed as
Ke = CoA2g - (40)

Headwater and tailwater elevations are taken from the two
boundary nodes connected by the culvert with the headwater elevation
the higher of the two. Flow is assumed to leave the system at the
headwater boundary node and to re—enter the system at the tailwater
boundary node. When only one node is assigned to the culvert, flow

is assumed to leave the system at that node and not return.
Two-Dimensional Bridge/Culvert Flow

Two-dimensional flow through a bridge or culvert is modeled
exactly as ordinary flow when the water surface is not in contact
with the top of the bridge or culvert opening (unconfined flow).
When the water surface is in contact with the top of the opening
(hereafter referred to as the "ceiling”), confined, or pressure,
flow conditions exist. The depth-averaged flow equations are
modified at node points where this condition occurs and a pressure
head rather than depth is computed. While it is usually not
practical to directly model the effect of piles and piers, their
effect on flow can be indirectly accounted for by increasing bed-

friction coefficients within the bridge opening.
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Depth-averaged confined flow through a bridge or culvert is
modeled by specifying a "ceiling” elevation at node points within
the opening. When the water surface is in contact with the ceiling,
pressure flow exists and the governing depth—averaged flow equations

are modified to account for this. The equations of motiua become

U 9 9 9 CEAN 9za
H — + — (BHUU) + — (BHUV) + g — (HP-HZ/2) + gP — - g(P-H) —
ot ax oy ox ax 9X
1 b 3 d
- — c -— — - a— =
QHV + T, 1y (HTxx) (HTxy) 0 (41)
o} ax ay

in the x-direction, and

av. 3 G ] 9z, 0z

H — + — (BHVU) + — (BHVWV) + g — (HP-HZ/2) + gP — + g(P-H) —
ot ax dy dy dy Yy
1 b ] d
+ - ¢ - — - - =
QHU + Ty + Ty (Hryx) (HTyy) 0 (42)
o ax ay

in the y-direction, and the continuity equation becomes

] ]
— (HU) + — (HV) = 0 , (43)
9x Jy

in which P is the pressure‘head, z, 1s the ceiling elevation, H =

Zo T Zps and T§ and T§ are the components of celling shear stress in
the x—- and y-directions, respectively. The dependent variables 1in
the confined flow case are U, V, and P, The effect of increased

fricticonal resistance due to the contact with the ceiling is described

by the ceiling-shear-stress term. The directional components of
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ceiling
c
TX

and
C
ty

shear stress are computed as

peu@? +vHY2 1+ Gz /am? + 3z o0 1H2 )

pcfv(U2 + vz)l/2 [l + (Bzclax)2 + (azc/ay)z]l/2 , (45)

in which cf is considered to be the same dimensionless friction

coefficient used to model the bed shear stress. The bracketed

term involving 9z./9x and 3z./3y accounts for the increased

resistance due to a sloping ceiling. Note that when confined flow

exists,

surface stress due to wind is not considered.
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APPLYING THE FINITE-ELEMENT METHOD TO THE SHALLOW-WATER EQUATIONS

The finite-element method 1s a numerical procedure for solving
the differential equations encountered in problems of physics and
engineering. Although it was originally devised to analyze structural
systems, the finite-element method has developed into an effective
tool for evaluating a wide range of problems in the field of continuum
mechanics. This development has been encouraged primarily by the
continued advancement of high~speed digital computers, which provide
a means of rapidly performing the many calculations involved in
applying the method. Although application of the finite-element
method to surface-water flow problems has been relatively recent, a
significant amount of literature on the subject has already emerged.

A detailed review of literature on the finite—element solution of
the equations of two—dimensional surface-water flow in the horizontal

plane is presented by Lee and Froehlich (1986).

FESWMS—2DH uses the Galerkin finite-element method to solve the
system of differential equations governing two-dimensional surface-
water flow in the horizontal plane. The time derivatives in the
flow equations are handled by an implicit finite-difference scheme.
In the finite—element approach, the physical region of interest is
divided into a finite number of subregions called elements. An
element may be either a triangle or a quadrilateral and is defined
by a finite number of nodal points situated along its boundary or
in its interior. Values of the dependent variables are uniquely

defined within each element in terms of their values at the element's
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node points by a set of interpolation functions.

The method of weighted residuals 1s then applied to the governing
differential equations to form a set of finlte—element equations for
each element. Approximations of the dependent variables in terms of
the interpolation functions and nodal unknowns are substituted into
the governing equations, which are generally not satisfied exactly,
to form residuals. The residuals are required to vanish in a
weighted-average sense over the entire solution domain. In Galerkin's
method, the weighting functions are chosen to be the same as those
used to interpolate values of the dependent variables within each
element. By requiring the weighted residuals to vanish over the
entire solution domain, the finite-element equations take on an
integral form. Coefficients are integrated numerically, and all the
element, or local, contributions are assembled to obtain the complete,
or global, set of equations. This set of algebraic equations is
solved simultaneously for the nodal values of the dependent variables.
Additional details on the finite—element method can be found in
Pinder and Gray (1977), Zlenkiewicz (1977), Becker and others (1981),
Carey and Oden (1983), Lee and Froehlich (1986, p. 5-10), and the

FESWMS—-2DH users manual.

Interpolation Functions and Elements

The interpolation functions used in the finite-element method
are typically low-order polynomials and depend on the type of elements

used to represent the solution domain. The most commonly used two-
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dimensional elements are triangles and quadrilaterals. The linear
variation of a quantity within such an element can be expressed in
terms of the values of the quantity at the corners (vertices) of the
element. The quadratic variation of a quantity can be expressed in
terms of the values of the quantity at the element vertilces and at
points along the sides of the element (usually at the midway points
between the corner nodes) and possibly also at the center of the
element in the case of the quadrilateral. For these elements, the
interpolated quantilty is continuous between elements and is said to
have CP°-continuity. If the first derivatives are continuous, the
interpolated quantity is sald to have Cl-continuity (Carey and Oden,
1983, p. 5, 6, 25, 36). Such higher order interpolation is sometimes

useful.

The model FESWMS-2DH allows the use of six-~node triangles,
eight-node “"serendipity"” quadrilaterals, and nine-node “Lagrangian”
quadrilaterals for representing velocity components (fig. 1). Depth
is represented using linear triangles or billinear quadrilaterals.

In general, nine-node quadrilaterals are preferred to elght-node

quadrilaterals for reasons of accuracy.

At times, 1t may be more éonvenient to represent relatively
complex geometric features with elements having curved sides. The
essential 1dea underlying the concept of curved—sided elements is
the mapping or transformation of a simple "parent” element defined
in a local-coordinate system to the desired curved shape in the

global coordinate system as shown in figure 2. The transformation

42



EXPLANATION
o Node

(a)

(b} (c)

Figure 1. Examples of the types of two-dimensional elements used
in FESWMS-2DH: (a) a six-node triangle, (b) an eight-node
"gerendipity” quadrilateral, and (c¢) a nine-node "Lagrangian™

quadrilateral.
Parent element in Curved-sided element in
local coordinates global coordinates

n
!

EXPLANATION "

® Corner node
O Midside node

Figure 2. Two-dimensional “"mapping” of some elements.
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from straight to curved sides is accomplished by expressing the global
(x,y)-coordinates Iin terms of the local (£,n)-coordinates using shape
or interpolation functions in the same way that a dependent variable
1s interpolated within an element. Such a transformation is called

isoparametric. Thus, the global coordinates can be writtem as

n ]
x =% Ni(e)x(ie) (46)
i=1

and

N'i(E)y(ie) , ' (47)
1

y=
i

=

in which n is the number of nodes associated with the element,

N;(e) = N;(e)(é,n) is the shape or interpolation function which

has the value unity at node i in element e and the value zero at all
other nodes, and (xge),yﬁe)) are tﬁe global coordinates of node 1

of element e. In FESWMS—2DH, N;(e) is a quadratic shape function

for the particular type of element being transformed.

The local coordinates (£,n) used in defining the shape functions
depend on whether the element is a triangle or a quadrilateral. A
local-coordinate system that relies on the element geometry for
its definition and whose coordinates range in absolute value from
zero to unity within an element is known as a natural-coordinate
system. Natural-coordinate systems for the parent elements

corresponding to triangular and quadrilateral global elements are
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shown In table 2 along with their appropriate shape functions.

Both linear and quadratic shape functions are listed for each

element because mixed interpolation is used in FESWMS-2DH in solving
the shallow-water equations; that is, linear functions are used to
interpolate flow depth and quadratic functions are used to approximate

the depth—averaged horizontal velocities.

The finite—element equations involve derivatives of the nodal
variables with respect to the global Cartesian coordinates x and y.
Therefore, the derivatives of the shape functions with respect to

X and y must be defined, since, for example,

~(e) (e)
du 0 N}

= — [z 8y = ¢ ufe) (48)
ax ax 3x

in which 3(®) = ; N%e)uge) is the approximation of the variable

u over the elem;;i e, Nge) is the shape function which has the value
unity at node 1 in element e, and uge) is the value of the variable
u at nede i of element e. Becauée the shape functions are given

in terms of the local coordinates of an element, it is necessary

to transform the global derivatives to local derivatives. By the
rules of partial differentiation,

3Ny 9Nj 9% oNj 3n

—_— = — s — (49)
5x  3f B8x 9n 9x

and
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Table 2. Parent elements and natural-coordinate shape functions.

Parent element Natural—-coordinate shape functions

(8o = EE4, N = NNy

Triangular elements

{+rn-1

n-0
Linear

N

Quadratic

All nodes

Ny =85 + ng + (L-£-n) (1-&4) (1-ny)

Corner nodes
Ni = & (28-1) + ny (2n-1)
+ (1-g-n) (1-2£-2n) (1-&£3) (1-nj)
Midside nodes

Ni =16 ggng + 8 (ngtEy) (1-&-n)

"Serendipity” quadrilateral elements

Linear

Quadratic

All nodes

Ny = 1/4 (1+E5) (l+ng)

Corner Nodes

Ni = 1/4 (1+€0) (1+ﬂ0) (Eo+no"l)

Midslde Nodes

N

i
<

;=172 (1-€%) (1+n); &4 =

|
=

2 .
Ni 1/2 (1-n") (1+€O)’ ny =
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Table 2. Parent elements and natural-coordinate shape functions
(continued) .

Parent element Natural-coordinate shape functions
(go = E;E.»l, Mo = nni)

"Lagrangian” quadrilateral elements

- All Nodes
e=a1] Legli=
;;;;] Ni = L/4 (1+£5) (14ng)
Linear
Corner Nodes
Ny = 1/4 Egng (14€45) (14ng)
Midside Nodes
be o Ny =172 ny (1-€2) (L4n,); &g = O
) Ny = 1/2 €5 (1mn%) (1465 1y = 0

Center Node
¥, = (1-£%) (1-n%)

Quadratic
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3

N3 aNj o9& aNi 9n
_—_— = —— — — —
y 3 9y 9n 9y

]

where the superscript (e) has been dropped.

(30)

However, explicit

expressions for £ and n in terms of x and y are usually not readily

available.

Thus, it is necessary to first consider Nj to be a

function of x and y. Writing the derivatives of Nge) with respect

to £ and n and dropping the superscript (e) yilelds, in matrix form,

[~ r
Ny

of

oNy

an

-

90X ay- rmE)N
2w e | | ox
9x  dy N
e | |y

i

= [J]
1

r~

e

oNj

ax

ONj

oy

wnrd

> (51)

where [J] 1s the Jacoblan matrix, which can be found explicitly in

terms of the local coordinates using equations 46 and 47. Thus

[J1 =

—_—
¥

I — x4

13

v
BNi
I — x4
on

, —_
BNi

L — yi
23

]
aNy

LI —yi
an

D

(52)

¥
where N; 1s the shape function defining the coordinate transformation.

The global derivatives may then be found as

BN:L-1
ax
oN¢

B

ay
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oNy

an

-

e
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or

aNg 1 9y oNj Jy oaNjy
_— .__( ——— ___) (54)
ax [J] Yon ag 3& on

and
oN{ 1 ax aNy ax 9Ny
—-=-——(——-——+———), (55)

3y [T In 9g 3E an

where |J| is the determinant of [J] and is computed as
7] = — — = — — . (56)

In addition to transforming the global derivatives to local
derivatives in the element equations, the area of the element must
be expressed in terms of £ and n. It can be shown (Sokolnikoff and

Redheffer, 1966, p. 355) that
dx dy = |J]| d& dn . : (57)

The operations indicated in equations 53 through 55 depend on the
exlstence of [J]_l for each element of the network. By the inverse
function theorem, the inverse mapping [J]‘l exists if and only if
the mapping defined by equations 46 and 47 is one-to—one. Also,
[J]'1 exists if and only if the determinant of [J], |J], does not

vanish within the element.
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Solution Methods

Many researchers solving the shallow-water equations by finite-
element methods have used the same order of interpolation for both
the velocity components and the depth (Lee and Froehlich, 1986, p. 10).
However, the use of equal-order interpolation results in solutions
that are plagued with short-wavelength noise (Lee and Froehlich,
1986, p. 10). The reasons for these problems are discussed by Gray

and Lynch (1979) and Platzman (1981).

A widely used approach for eliminating oscillations in the
wvater—surface elevation is the use of mixed interpolation, 1in which
a lower order of interpolation 1s used for depth than for the
velocity components. Quadratic interpoiation for velocity components
and linear interpolation for depth or water—surface elevation on
triangles is used by Norton and King (1973), Norton and others
(1973), Tseng (1975a, 1975b), King and Norton (1978), Walters and
Cheng (1978, 1980), Norton (1980), and Gee and MacArthur (1982).
This approach has been adopted in FLOMOD. Additionally, the FLOMOD
user has the option of using quadratic interpolation for velocity
components and bilinear interpolation for depth on eight-node
quadrilateral elements or biquadratic interpolation for velocity
components and bilinear interpolation for depth on nine-node

quadrilateral elements.

Although primitive wmodels using mixed interpolation do not

exhibit spurious surface-elevation modes (they do, however, exhibit
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velocity modes), they suffer from a ratio of discrete continuity
equations to discrete momentum equations that is much less than
the continuum ratio of 0.5. This can cause significant errors in
mass conservation. Increasing network detall is effective in

reducing these mass-conservation errors (Gee and MacArthur, 1978).

In another approach, the primitive continuity equation 3 is
replaced by the second-order wave continuity equation (Lynch and

Gray, 1979, 1980):

3%H ¢y 9 3 [ 3 3H
~— 4+ — — - — | — (HU?) + —— (AVU) + gH —
at2 pH ot ax | ax oy 9%
dz}, 5 5 [
+ gH — ~ QUV - == | = == | — (HUV)
ax p oy | 90X
a dH FAN
+ — (HVZ) + gH — + gH - + QHU
oy ay oy
T; HU 3 C_b HV o Cb
- e = — -} == = -] =0 . (58)
P P 3x'p P 3y

In deriving equation 58 from equations 1, 2, and 3, the stress

terms Tyx, Txy, Tyx, and Tyy are set to zero, and the substitution

12 = cpu and T; = cpVv (59)

is made, in which ¢} is a bottom—-stress coefficient.

Use of a wave—equation model requires that steady-state
solutions be obtained by dynamic relaxation (time stepping) rather

than directly unless Fourier transformation is used to transform
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the equations from the time domain to the frequency domain. In
this case, the steady-~state solution can be obtained for zero

frequency (Walters, 1986).

An advantage of a wave—equation scheme 1s that equal-order
interpolation can be used for both depth and velocity components
without the spurious oscillations In water-surface elevation that
plague solutions based on equal-order interpolation and the primitive
shallow—water equations, thus providing a ratio of discrete continuity
equations to discrete momentum equations that is closer to the
continuum ratio of 0.5 than that obtained with mixed interpolation.
Consequently, better mass conservation might be expected for a wave-
equation solution. Another advantage of a wave—equation scheme 1is

that the depth solution can be separated from the velocity solution.

Extensive tests were performed with two wave—equation models.
The first model, WAVETL (Lynch and Gray, 1980), 1is explicit in time
and uses linear triangular elements. Element nodes are used as
integration points (modal integration). This causes the matrices
multiplying the time derivatives to be diagonal, thus eliminating
the need for solving large systems of linear equations at each time
step. A second model, QUIET (Gray and Kinnmark, 1982), uses nine-
node isoparametric quadrilaterals and is explicit in time. Nodal
integration is alsc used in QUIET. Thus, the matrices generated
are diagonal. It was found to be very difficult to obtain stable
solutions in tests with both hypothetical and real-world cases.

For this reason, further attempts to use a wave—egquation scheme
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were abandoned.

Another technique which can be used to eliminate spurious
oscillations when equal-order interpolation 1s used is upwinding.
This involves the use of discontinuous welghting functions. An
upwlinding scheme called the dissipative Galerkin scheme 1s presented .
by Katapodes (1984, p. 451). The equations of one-dimensional flow
in a prismatic channel of rectangular cross section are written in

matrix form as

oU au
—+Aa—=0, (60)
ot axX
in which
y
U = (61)
q
and
0 1
A= ; (62)
c2—y2 2u

in which t is time, x is distance, y is depth of flow, q is unit
discharge, u is average flow velocity, ¢ = (gy)lfz, and g is
gravitational acceleration. Katapodes (1984, p. 455) proposes the
following weighting function:

oNj

Nyx = Ny +edl — (63)
Ix
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in which Nj is the linear basis function which has the value unity
at node 1 and the superscript T denotes transposition. The degree
of discontinuity is controlled by the choice of €. A second-order-

accurate time-stepping scheme is used.

Numerical tests by the writers indicated that this weighting
function provides effective damping of short-wavelength oscillations
for dynamic solutions to unsteady one-dimensional flow problems
when € 1s optimized to damp short wavelengths and when the value of
the Courant number, cAt/Ax, is approximately unity or less. A least
squares scheme 1Is a special case of the dissipative Galerkin scheme

for € = At/2.

For obtaining direct steady-state solutions, the writers found
that the weighting function aNi/Bx worked best. In this case, boundary
conditions were simply superimposed con the finite-element equations
at boundary nodes. The resulting scheme 1s just the four-point
implicit (Prelssmann) finite-difference scheme. An effort was made,
but without success, to generalize this direct steady-state approach

to two dimensions.

Numerical Integration

Numerical integration is used in FLOMOD tc evaluate the terms
of the equation reslduals and the Jacobian matrix. Fifth-order
integration (nine—-point for quadrilaterals and seven-point for

triangles) 1s used.
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In transient finite~element analyses, the matrix multiplying

the time derivative {(also called the mass or capacity matrix) is

M= o wgNy (64)

where Ny, i =1, 2, ..., n, are the interpolation functions and @
is the discretized domain. It has been noted that the use of
element nodes as integration points increases the sparsity and
diagonal dominance of the time matrix and, under appropriate

conditions, yields a diagonal matrix.

As stated above, nodal integration is used in the explicit
wave—equation models WAVETL and QUIET. Thus, diagonal time matrices
are obtailned. The difficulty in obtaining stable sclutions with
these models was discussed above. Moreover, even if stable steady-
state sclutions could be obtained, in a simulation involving thousands
of elements, the time step would be restricted by the smallest
element size in the network. Thus, such a large number of time
steps would be required to obtain a steady—-state solution that the
approach would not be competitive with a direct steady—-state solution
that may require the solution of a system of linear equations at

each iteration.

Nodal integration was tried in FLOMOD for evaluating both the
equation residuals and the terms of the Jacobian matrix. Because
an implicit timertepping scheme is used in FLOMQOD, the use of
nodal integration does not result in diagonal time matrices. TUse

of nodal integration to evaluate residuals was found to decrease
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solution accuracy somewhat. Use of nodal integration to evaluate
the terms of the Jacobian matrix was found to increase slightly
the sparsity of the matrix but not enough to affect the time
required to solve the system of equations. Thus, there is no

advantage to using nodal integration in FLOMOD.

Solution of Nonlinear Algebraic Equations

The depth-averaged equations of motion and continuity which
describe shallow surface-water flow are, in their complete form, a
coupled system of nonlinear partial-differential equations. The
many alternatives for numerically solving the system of nonlinear
algebraic equations which results from the finite-element discretization
of the governing partial-differential equations present such a wide
choice that it is difficult to know which technique is best.

Processes which are economical in one context may be uneconomical

or divergent in another.

The numerical solution of the nonlinear equation system represents
the major part of the cost in obtaining a finite-element solution to
fluid-flow problems. Computational efficiency in terms of both time
and storage space dictates that a symmetric equation system be solved
if possible. The coefficient matrix that is formed, however, is
nonsymmetric due to the presence of the nonlinear inertia and bottom

friction terms.

The finite—element formulation leads to a set of global

discretized equations of motion and continuity in the form
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K(a)a = f , (65)

in which the K is the matrix of assembled element coefficients, a
is the vector of unknown nodal values, and f is the global force

or load vector. This simultaneous nonlinear system of equations

is solved in FLOMOD using a strategy that combines both full-Newton

and quasi-Newton iteration.

In full-Newton iteration, the (itl)st iterate, aj4y, is given

in terms of the ith iterate, aj, as
a;; = a; - J(aprcay) (66)

in which J(aj) is the Jacobian, or tangent, matrix computed from
aj and r(a;) = K(aj)ay — f is the residual load vector. In practice,

this iteration is performed as

J(aj)haj = - r(aj) (67)
with

ajy1 = aj + hag . (68)

The process usually converges quite rapidly in the vicinity of the
solution; however, if the initial estimate is not sufficiently

close, divergence can occur.

The LU factorization of the Jacobian (the factorizatiom of the
Jacobian into lower and upper triangular matrices) that is formed

during the full-Newton iteration can, optionally, be updated in a
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relatively simple manner rather than be recomputed completely at
each iteration. Such a procedure is known as a quasi-Newton method.
Broyden's update procedure in inverse form 1Is used (Engelman and

others, 1981).

Given an initial solution estimate, a,, the LU factorization of
its Jacobian, J,, and the initial search direction, Aa,, the quasi-
Newton algorithm proceeds as follows:

For i = 1 to igsyx

1. Form 6&; = Aaj—
2. Compute Aay = - J;lr(ai)
3. For j=1 to i-1
Compute Aai = Aai - pj(5j+rj)5§Aai
Next j

4. Form ri = Aaj - 6i

K

oy = 1/8jr
5. Compute ba; = Aa; - pi(61+ri)6'{ﬁai

Next i

Each iteration requires the solution of a single linear system
for which the triangular factors of the coefficient matrix are already
known, plus the vector operations needed to update the matrix. Two
updating vectors (8 and rj) are created at each iteration and are
kept and reused in subsequent iterations up to a limit imposed by
the user. When the upper limit is reached, the updating vectors
are shifted one position downward {thus the first pair is lost) and

computations continue. If the limiting number of updates 1s set to
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zero, then the coefficient matrix is not updated and modified-Newton

iteration results.

The user is thus provided with a choice of solution strategies.
A typical solution will combine both full- and quasi-Newton iterations
in an attempt to achieve the fastest solution possible. Generally,
at least two or three full-Newton iterations are required when
starting cold (that is, initially with velocities set to zero and
a constant water-surface elevation) or after having made substantial
changes to boundary conditions or the geometry of the finite—element
network. These initial iterations can then be followed by one or
more quasi~-Newton iterations or by a combination of quasi- and

full-Newton iterations.

The optimal number of update vectors te use in a quasi-Newton
iteration is largely problem dependent. Beyond a limit, the updating
procedure becomes uneconomical. Maintaining more than about five
sets of update vectors in memory has been found to result in wasted
computational effort. Therefore, the number of update vectors used

in FLOMOD is limited to a maximum of five.

Solution of Linear Algebraic Equations

At each iteration a system of linear algebraic equations of the

form

Ka = f (69)

must be solved, where K is the square coefficient matrix, a is the
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column vector of nodal unknowns, and £ is the column vector of nodal

forces, or loads.

The system of equations represented by equation 69 can be
solved either directly or iteratively. Direct methods are based on
Gaussian elimination and are direct in the theoretical sense that
if rounding errors are ignored, the exact answer will be found in a
finite number of steps. Iterative methods, on the other hand,
consist of a series of successive corrections to an initial estimate
of the unknowns, the process being performed repetitively until the
size of the corrections becomes sufficiently small. Although
convergence of iterative methods can often be assured, the amount
of computation required to reach a sufficiently accurate solution

is not known in advance.

Several solution algorithms were tried in the development of
FLOMOD: (1) a banded-storage solution, (2) a partitioned-block
skyline-storage solution scheme, (3) a frontal solution scheme, and
(4) a conjugate-gradient solution scheme. The first three solution
strategies are direct methods, and the last is an iterative sclution
scheme. The use of these methods to solve the shallow-water equations

is discussed in the following sections.

Banded-Storage Solution Scheme

The coefficient matrix, K, that is found in the finite-element
solution process is generally quite sparse (that is, a preponderant

number of the coefficilents are zero). The nodal unknowns in the
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column vector, a, can be arranged so that the nonzero coefficients
in the matrix X are within a band running parallel to the diagonal
of K. The width of this band can often be made quite small com-
pared with the number of unknowns, and a significant savings in
storage can be achieved by storing only those terms within this

band.

A banded-storage solution scheme was initially used in FLOMOD.
This scheme employed direct triangular decomposition. No pivoting
was used in the factorization although a partial-pivoting strategy

could have been employed.
Partitioned-Block Skyline—-Storage Solution Schene

It is possible to reduce the required storage and computational
effort even further by using a skyline-storage scheme in which the
lower triangular part of the coefficient matrix is stored by rows
and the upper triangular part by columns (or vice versa). It is
necessary to store and compute only within the nonzero profile of
the equations. This method has advantages over a banded-storage
solution scheme since it never requires more storage and coefficients
are arranged so that all multiplications can be performed as very

fast dot-product operations.

The partitioned-block skyline—storage scheme presented by Hasbani
and Engelman (1979) was modified for use in FLOMOD. In this algorithm,
the coefficient matrix is partitioned into blocks which are temporarily

stored in a disk file during equation solution. This storage scheme
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allows extremely larpge systems of equations to be solved.

The partitioned-block skyline-storage solution scheme was
faster than either the banded-storage or the frontal solution schemes
but has the disadvantage of not allowing pivoting. Walters (1980,
p. 268) states that the lack of pivoting is not a severe problem
when solving the shallow-water equations using the finite-element

method since the assembled system exhibits strong diagonal dominance.

In order to simulate flow over weirs (highway embankments)
and through culverts and also pressure flow through bridges when
the water-surface is in contact with the underside of the bridge
deck, some of fhe shallow-water equations are replaced by others
containing a zero diagonal coefficient. Also, flows along boundaries
of the finite—element network are treated in such a way that under
certain conditions a zero diagonal coefficient might be formed.
For these reasons, the skyline-storage algorithm cannot always be

used.
Frontal Soluticn Scheme

The frontal solution technique i1s a direct solution scheme
which is closely connected to the finite—element method. It is
designed to minimize core~storage requirements as well as the
number of arithmetic operations needed to solve the system of
equations. The main idea of the frontal method is to assemble and
eliminate the element equations at the same time. As soon as an

equation is completely formed from the contributions of all relevant
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elements, it is reduced and then eliminated from the "active"
coefficient matrix, being written toc a buffer and, eventually, an
auxlliary storage device. Therefore, the coefficient matrix is
usually never formed in its entirety. The active matrix contains,
at any given instant, only those equations which have been partly

assembled or are complete but have not yet been eliminated.

The number of unknowns in the front at any particular time is
called the frontwidth and will generally change continually during
the assembly/elimination process. The maximum frontwidth determines
the required size of the active coefficient matrix and is determined
by the order in which the elements are assembled. When assembly
1s complete, the upper triangular matrix will have been formed and

will be ready for backsubstitution.

The frontal solution scheme presented by Hood (1976, 1977)
was modified and added to FLOMOD. Modifications were made to
eliminate unnecessary computations and to save both the upper and
lower triangular matrix decompositions 1f a quasi-Newton solution
is to be performed. Also, eliminated equations are stored in a
buffer (the size of which depends on available computer storage
and storage—device limitations), which 1s written to an off-line
storage device when full or nearly full. Data-transfer time
decreases as the size of the equation buffer is increased. A
diagonal-pivoting strategy is used in which the equations that are
complete in the active coefficient matrix and ready for elimination

are scanned and the one with the largest value on the diagonal is
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eliminated next. A minimum number of completed equations may be
maintained in the active coefficient matrix, thus ensuring a choice

of pivotal elements.

The frontal solution algorithm contained in FLOMOD has been
tested on small to extremely large problems and has been proven
quite successful in all cases. It 1s faster than the banded-

storage scheme and generally needs much less core-storage space.
Conjugate-Gradient Solution Scheme

The process of solving a set of n simultaneous equatilons is
similar to that of minimizing an error function defined over an
n-dimensional space. In each step of a coﬁjugate—grédient éolution,

a trial set of values is used to determine a new set of values with

a correspondingly smaller value of the error function. The conjugate-
gradient method is thus an iterative solution technique. The
convergence of the method, even if it can be assured, can be very
slow and thus the amount of computation required to obtailn an

acceptable soclution is not very predictable.

A conjugate-gradient solution scheme was tested in FLOMOD.
For each conjugate—gradient iteration performed, equations at each
node are assembled and residuals computed. The computational
effort at each iteration 1s thus quite large. Convergence is very
slow. Although others {see Lee and Froehlich, 1986, p. 40) have
successfully employed the conjugate—gradient method for the solution

of finite-element problems, use of this solutlon technique in
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FLOMOD was found to be much slower than direct solution schemes.
Although the core-storage requirement of the conjugate-gradient
solution scheme is less than that of direct methods, the tradeoff
between computer memory and computer time does not seem to be an
advantage. Therefore, the conjugate-gradient method has not been

included in FLOMOD as an equation—solution scheme.

Finite-Element Equations

The method of weighted residuals with Galerkin weighting is
applied to the governing depth-averaged flow equations to form the
finite—element equations. Because the system of equations is
nonlinear, Newton's iterative method (see, for example, Atkinson,
1978) is used to obtain a solution. At each iteration, the residuals
are formed. In addition, the Jacobian, or tangent, matrix, a
matrix of derivatives with respect to each of the independent
variables for each of the residuals, is required. The finite-element
expressions for the residuals written at the ith node point and a
discussion of the application of boundary and other "special”
conditions are presented in the following sections. The elements

of the Jacobian matrix may be found in the FESWMS-2DH users manual.

Residuals

The finite-element expressions for the residuals of the depth-

averaged flow equations written at node 1 are
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for the equation of motion in the y-direction, and

o U o oV 3H
f3y = [ My [—+H—+U—+H—+V — ] dA, (72)
€A gt Ix axX 3y 3y

for the continuity equation, where g indicates a summation over all
elements, Ap 1s an element area, S, is an element surface (or
boundary), Ny 1is a quadratic shape function which has the value unity
at node i and the value zero at all other nodes, M; is a linear shape
function which has the value unity at node i and zero at all other
nodes, and 4y and %y are the direction cosines between the outward
normal to the boundary and the x— and y-directions, respectively.

All second-derivative terms in the momentum equations have been
integrated by parts through application of Green's theorem to

reduce the order of the equations and allow the use of quadratic
shape functions for velocities. The convective and pressure terms
have also been integrated by parts. Integration by parts of the
convective terms simplifies the finite-element-equation formulation,
and integration by parts of the pressure terms facilitates the
application of normal-stress boundary conditions. The last boundary
integral in the two equations of motion represents the lateral

stress due to the transport of momentum by turbulence.

When two—dimensional flow through a bridge 1s 1in contact with
the ceiling, pressure flow exists, and the pressure, P, replaces the
flow depth, H, as the solution variable at the relevant node points.

In the case of pressure flow, the finite—element expressions
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for the residuals of the depth—averaged flow equations written at

node 1 are
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for the equation of motion in the x-direction,
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for the equation of motion in the y-direction, and

U aH av 9H
f34 =L [ My [H~+0U —+H —+V —] dA, (75)
© A, ax ax 3y 3y

for the continuity equation where H = z, = zp.

Time Derivatives

Equations 70, 71, and 72 apply to a particular instant in
time. If a steady-state solutlon 1s desired, all the time derivatives
are equal to zero and do not need to be evaluated. If the solution
1s time dependent, however, these equatlions must be Integrated with
respect to time as well as space. This is accomplished by using an
implicit scheme In which the time derivatives are approximated by a
finite~difference expression. For example, the derivative of U with

respect to time at the end of a time step is gilven by

30 1 (1L -8),3U
3t BAL 0 atl o
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where 0 is a welghting coefficient ranging between 0.5 and 1, At

is the length of the time step, and the subscript o indicates known
values at the start of the time step. Note that if ¢ equals unity
the integration scheme is linear, and if 6 equals 0.5 a trapezoidal
integration scheme results. A value of 0§ equal to 0.67 has been
found to produce a stable solution even for relatively large time
steps while also providing a high degree of accuracy (King and Norton,
1978, p. 2.82, 2.83). R. A. Walters (written commun., 1987) observes
that for a value of 0 equal to unity, the solution is damped; for a
value of 0 equal to 0.5, there 1s peaking in amplitude near the grid
cutoff (for wavelengths close to twice the grid spacing); and for

a value of 0 equal to 0.67, the solution response is nearly optimal.

Equation 76 can be rearranged as

aU
— = U - 8 , (77)
ot
in which
1
o = - (78)
At
and
(1 - 8),3U
1 = allg + ———————( ——) . (79)
3] ot /4

where B contains only known quantities. Similarly, time derivatives

70



of V and H can be written as

AT
— =aV - By (80)
ot
and
oH
~— =oH - B3 , (81)
ot
where
(1L - 8) ,aV
By = aVgy + (") (82)
6 I’ 4
and
(1 - 6) s9n1
By = aHy + (** ) . (83)

9 at /4

Application of Boundary and Special Conditions

The Galerkin finite—element formulation allows complicated
boundary conditions to be automatically satisfied as natural conditions
of the problem. Natural boundary conditions are treated by moving
terms involving the relevant variables to the right-hand side of
the finite-element equations. Those boundary conditions that must
be explicitly imposed are known as forced, or esgential, conditions.
These boundary values are prescribed by modifying the finite-element

equations governing the relevant variables so that the boundary
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conditions are explicitly satisfied. 1In addition, special boundary
conditions imposed by one-dimensional flow at culverts and weirs can

be easily applied.

Open boundaries

In FLOMOD, velocities and depth may be applied as essential
boundary conditions at any node point on an open boundary as long
as the system of equations does not become overconstrained. These
prescribed nodal variables are introduced by replacing the residuals

at node 1 by

f14 =07 » (84)
£, = Vi , (85)
and
£4; = H , (86)

where Uz, V;, and H; are the specified values at node 1.
Unit discharges are applied in a similar manner by replacing the

motion-equation residual expressions by

f11 = UiH; - axi ' (87)

and

£21 = Vil ~qyi » (88)

where qyuj and qyi are specified unit discharges in the x- and y-
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directions, respectively, at node i. The derivative equations
corresponding to equations 84 through 88 are given in the FESWMS-2DH

users manual.

Depth may also be specified as a natural boundary condition of
the problem. This is done by using the specified value of depth
at node i, Hz, when evaluating the boundary-integral terms in
the momentum residual expressions 70 and 71. When computing
derivatives of the momentum residuals with respect to HI,
contributions from the boundary-integral terms are taken as zero.
When depth is specified as a natural boundary condition, global
mass conservation 1s ensured, and total inflow equals total outflow
in steady-state simulations. However, depths computed at nodes
where the water—surface elevation is applied as a natural boundary
condition may differ slightly from the specified values. When
depth is specified as an essential boundary condition, the total
outflow may differ slightly from the total inflow in steady-state

simulations.

If the total discharge through a cross section forming part of
the open boundary of a finite-element network is specified, a
constant energy slope along the section is assumed and the total
discharge 1s divided among the node points on the basis of conveyance.
The cross section is composed of a list of node points which form
a connected series of element sides. Each element side is composed
of three nodes (1, 2, and 3) with nodes 1 and 3 being corner nodes

and node 2 a midside node. The conveyance through each element
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side 1s computed as

BR
- (89)

Cf

in which R is the hydraulic radius (area divided by wetted perimeter)
of the element side and A is the area of the element side below the
water surface. The conveyance for the total cross section is
computed as the sum of the conveyances of each element side forming

the section.

The conveyance through each element side is distributed among

the three nodes forming the side as follows:

Ky =K1 -3)/6, - (90)

Ky = 2K/3 , | (91)
and

K3 =K1 +¢)/6 , (92)

in which ¢ = 5AH/12H where AH = Hy - Hy, H = (Hy + H3)/2, Hy is the
depth at node 1, and H3 is the depth at node 3. Total discharge
normal to the open boundary at each node forming the cross section

is then based on the ratio of conveyance assigned to each node to

the total conveyance computed for the cross section. The velocities
and depth computed at each node are required to satisfy the condition
that the net discharge across the open boundary due to flow at the

node will equal the assigned portiom of the total cross—section
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discharge. The procedure used to ensure that this condition is
satisfied {s described in the section "Total discharge across a

boundary."”

Solid boundaries

Solid-boundaries define such features as natural shorelines,
jetties, or seawalls. For viscous fluids, the velocity at a solid
boundary is actually zero. This 1s commonly referred to as the
"no-slip” boundary condition. A no-slip condition can be specified
by applying x— and y-velocities of zero as essentlal bouhdary
conditions. Near a boundary at which a no-slip condition has been
imposed, a relatively dense network of elements 1s required in
order to resolve the lateral boundary layer. For practical purposes,
however, a "slip” condition is usually applied whereby flow is
allowed to move tangentlally along a solid boundary. Imposing a
slip condition along solid boundaries reduces the total number of
elements needed in the network and thus decreases the number of
computations in the solution. S5lip conditions are applied at a
solid-boundary node by first transforming the x- and y-equations
of motlion that are associated with that node into the tangential
and normal equations. The equation of motion in the normal direction
is then replaced by a constralnt equation that requires the net
discharge across the solid boundary due to flow at the node point

to equal zero. This procedure is described in the following section.
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Total discharge across a boundary

Total discharge across a boundary (normal discharge) due to
flow at node i may be specified in several ways. The normal discharge

across an open boundary due to flow at node i is computed as

Qf = QY +Qy > (93)

whetre Qgi is the open-boundary normal discharge due to directly

specified flow at node 1 and Qyy is the portion of the total discharge
through a cross section assigned to node i (by the procedure discussed
on pages 73 through 75). The normal discharge across a solid boundary

due to flow at node i is computed as

Qi - Q:i T Qut * Qg s (94)

where Qgi is the solid-boundary normal discharge due to directly
specified flow at node i, Qi 1s the computed discharge over a
weir (roadway embankment)} segment associated with node i, and Q.;

1s the computed discharge through a culvert at node 1.

Along a boundary (either open or solid) where the normal
discharge 1s to be prescribed, the residuals of the x- and y-
equations of motion are first transformed into tangential and
normal residuals. At node point i, this transformation is written

as
1]
fli = fli cog § + fZi sin § (95)
and
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1
fZi = - f11 sin § + £,y cos s , (96)

1] )
where f;; and f,; are the transformed motion-equation residuals
in the tangential and normal directions, respectively, and § is the
angle between the poslitive x—direction and the tangent to the

boundary at node 1{i.

If discharge normal to an open boundary at node i is specified,

the equation of moticn for flow tangential to the boundary is replaced

by

— o] - o _
f£14 = aguy + bV, -} =0 . (97)

If discharge normal to a solid boundary at node i is specified,
the equation of motion for flow normal to the boundary 1s replaced

by

. s [ - nS -

The terms a?

b5 in equations 97 and 98 are
i» i q

bg and ai,

coefficients that are found by requiring the computed discharge

across the open or solid boundary due to flow at node i to equal

the specified discharge. These conditions are written as

o 0 _ 0 _
Uy L jONiH by dSg +Vy I jONiH 4, dSg - Qf =0 (99)
Se Se
and
s S .S =
U J MM 2 ass +v, [ NH £, dsg -Qf =0, (100)

1le gs X e gs
e
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where Ny 1is the interpolation function for velocity at node 1, Sg
is that portion of the network boundary considered to be open, and
SZ is that portion of the network boundary considered to be solid.
Comparing equation 97 with equation 99 and equation 98 with equation

100, it 1s readily seen that

ad =1 [ N;H 2 dST, (101)

e SZ
b =1 [ N;H iy sg , (102)

e sg
af =% [ NyH 2 ds] , (103)

e sg

and

b? = L jSNiH by dsg . (104)

S

e

The derivatives of the constraints for total discharge across

open and solid boundaries are given in the FESWMS-2DH users manual,

Along all solid boundaries, the normal discharge 1s required
to equal zerco unless otherwise specified. This is accomplished by
getting Q? to zero in equation 98 and requiring the normal-flow

constralnt to be satisfied at all solid-boundary nodes.

In the finite-element model developed by Norton (1980), a
contlnuous tangent along a slip boundary is assumed to ensure zero
mass flux through the boundary if the velocity is forced to be

tangential to the boundary. This is true when the dependent variables
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are the veloclty components, U and V. As shown by Gray (1984),
the appropriate normal and tangential directions depend on the
depth, H, and thus depend on time in unsteady flows. As showm
above, the FLOMOD code ensures zero normal mass flux along slip
boundaries without the need to use a smoothly varying boundary.
This significantly simplifies the user's task 1n setting up model

input data.
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FEATURES OF THE MODELING SYSTEM FESWMS-2DH

Graphic Qutput Standard

FESWMS-2DH programs generate graphic output through calls to
American National Standards Institute Graphical Kernal System
(ANST GKS) subroutines. Use of the GKS standard (1) makes the
graphics programs very portable (that is, they will be able to run
on any system provided the necessary interface software is available),
(2) provides the ability to transport graphical information from
one place to another (for example, by means of magnetic tapes or
floppy diskettes), and (3) enables long-term storage of graphical
information. The ANSTI GKS has been adopted as a Federal Information
_Processing Standard (FIPS) effective November 3, 1986 (National

Bureau of Standards, 1986).

Data Input Module, DINMOD

The data input module, DINMOD, can be used to develop a new
finite-element network or to refine or modify an existing network.
The capabilities of DINMOD include the following:

e Input of all geometric data required to define the finite-
element network. Input data are read from data records
and, optionally, from a previously generated geometric data
file.

e Use of either U.S. Customary (inch—-pound) units or Internatiomnal
System (metric) units in all computations.

e Checking of all input data for compatibility with array
dimensions and, optionally, for strict geometric consistency
and completeness, which 1s useful when developing a new network
or making extensive revislons to an existing network.
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Interpolation of nodal coordinates along stralght-1line
segments of the finite-element network.

Automatic generation of all or part of the finite—element
network including element connectivity lists, nodal
locations, and interpolation of nodal ground-surface
elevations.

Refinement of the network.

Development of an element—assembly sequence that will result
in an efficlent frontal solution of the system of finite-element
equations.

Output of the processed geometric data to a file for input
to other FESWMS-2DH programs.

Plotting of the finite—element network and ground-surface
elevation contours.

Error Checking

In order to assist the model user in developing or modifying a

finite-

in the

element network, numerous error checks have been included

data input module. Among the checks for geometric consistency

and completeness of the finite-element network that have been added

are the following:

All node, element, element—sequence, and property-type numbers
are checked for compatibility with the approprilate array
dimensions and other program limits.

Nodal coordinates are checked to be sure they are within the
appropriate range.

Each corner node is checked to be sure its coordinates are
specified.

Within an element, a check is made for different nodes with
the same coordinates.

DINMOD checks for consistency of element sides common to two
elements.
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e A check is made to see that each node is used only as a corner
node, a midside node, or a center node (if any).

e DINMOD notes when the Jacoblan determinant is negative or
zero at a Gausslan integration point within an element.
This is caused by a poorly formed element.
The geometric data file should not be considered free of errors

until a network plot and a contour plot of ground-surface elevations

are carefully inspected.
Automatilic Network Generation

In order to use the finlte-element method to solve surface-water-
flow problems, a model must be constructed describing the geometry,
physical properties, and boundary conditions of the system under
study. For elementary problems, the required input data may be
conveniently computed and assembled by hand, then keypunched or
typed into a file. For moderate to large problems, manual preparation
of the finite-element network data becomes a tedious and expensive

task which is prome to errors.

Automatically developing all or part of the finite-element
network 1s accomplished in DINMOD by first subdividing the area or
areas for which elements are to be generated into one or more
subareas of relatively simple shape. A second-level subdivision
is then imposed on each of the initial regions to develop an orderly
assemblage of elements and node points. DINMOD employs a triangulation
technique (Tracy, 1976) in combination with a final smoothing
procedure to automatically construct six-node triangular elements

during the second—level subdivision.
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EXPLANATION
s Corner node

Figure 3. Examples of (a) a region inside of which a finite-element
network is to be generated automatically and (b) an initial
subdivision of the region into simply connected subregions
A and B.

Initial subdivisions typically define areas of similar topography
and surface cover in which solution gradients (that is, the horizontal
rates of change of depth and velocity) are relatively constant.

An initial region is described by a list of the corner nodes that

form its boundary. These points are recorded starting at any node

and proceeding around the boundary in a counterclockwlse direction.

An initial region must be slnply connected; that is, the entire
boundary must be formed by a continuous line. If a network 1Is to
be automatically generated for a region such as that shown in
figure 3(a), the region must be divided into at least two initial

subregions, A and B, as shown in figure 3(b).

The polygon formed by the list of corner nodes defining the
Initial reglon 1s next filled in with six—-node triangular elements.

These elements are formed by cutting off sharp corners of the polygon
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Figure 4. TFormation of two new elements by automatic triangulation.

and replacing selected nodes on the boundary of the polygon with

+ ew nodes in the interior of the region.

The automatic triangulation begins by removing each vertex
(corner node) of the polygon having an intermal angle less than 90
degrees by commecting the two adjacent corner nodes to form a
triangle. Then, starting at any vertex with an internal angle
less than 180 degrees, two new triangles are formed by adding a
corner node to the interior of the polygon based on the coordinates
af the cormer nodes adjacent to the vertex. The x- and y—-

coordinates of the new node are computed as

1
x4 = - (x1tx3) + w(y1-y3) (105)
2
and
1
y4 == (y1ty3) + w(xz=xy) , (106)
2

where the subscripts refer to the numbered node points shown in

figure 4 and w 1s a weighting factor. The default value of w in
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DINMOD 1s 1/3; however, other values can be used to generate slightly
different networks. If any vertices are created with internal

angles less than 90 degrees, they are immediately removed by
connecting the two adjacent vertices to form a new element. This
process continues until there are only three nodes remaining in the

polygon list, thus defining the last element.

Since there is the possibility of generating some overlapping
elements that would eventually cause computational problems, a
smoothing procedure is used to refine the shape of the elements
formed in the triangulation process. The smoothing procedure used
is the Laplacian scheme described by Buell and Bush (1973). This
scheme requires the coordinates of the newly created node points to

satisfy the equations

1 Lg
xy = = L (xkj + Xpgo) (107)
2Li =1
snd
1 Ly
yi = L (ykj *tye) > (108)
2Li k=1

in which Ly is the number of elements connected to node 1, and
(xkj,ykj) and (xygp,¥ke) are the coordinates of nodes in neighboring
element k, as shown in figure 5. Since equations 107 and 108 are
nonlinear, they are solved by an indirect iterative technique.

Convergence 1s usually achieved within five iterations,
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Figure 5. Neighborhood of node i in element k used in Laplacian
smoothing of a finite-element network that has been
generated automatically.
Element connectivity lists and the coordinates of newly created

nodes are automatically computed. Ground-surface elevations of the

corner nodes must be entered by hand.

An exanmple of a region inside which elements are to be auto-~
matically generated is shown in figure 6(a). The generated network

is shown in figure 6(b).
Network Refinement

In many instances, the user will not be sure just what level of
discretization is required iﬁ a finite-element network to provide a
desired solution accuracy. If this is the case, one way to proceed
is to develop an initial network using fairly large elements in
order to minimize computational effort and computer storage requirements.

If the results indicate that a network with smaller elements is
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EXPLANATION

(1) Element number
e Corner node

0 Midside node

Figure 6. Example of a network that has been generated
automatically: (a) an initial subdivision defined
by a series of connected corner nodes and
(b) the network generated inside the initial
subdivision.
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needed, a feature of DINMOD can be used to quickly refine the
entire network by dividing all the elements into four similar
elements as shown in figure 7. Elements with curved sides will be
transformed into similar curved-sided elements. New element
connectivity lists and node point data are automatically generated.
However, a new element assembly sequence will have to be developed

by using the element resequencing capability of DINMOD.
Element Resequencing

A frontal technique is used in FLOMOD to solve directly the
system of finite—element equations. This technique assembles and
reduces the equaticns on an element-by-element basis. As soon as
the coefficients of a particular equation are completely assembled
from the contributions of all elements adjacent to the node to
which the equation corresponds, the partially assembled set of
equations can be reduced by the completed equation, and the completed
equation can be eliminated and stored out of core. Therefore, the
entire global coefficient matrix is never completely formed in
core. At any given instant, the equations contained in core are
those tﬁat are either not yet complete (are only partially assembled)

or those that have just been completed but have not yet been eliminated.

The degrees of freedom associated with the equations in core
are called the wavefront, or simply the front, because the line of
nodes corresponding to these active degrees of freedom generally

moves through the network like a wave as the elements are assembled
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EXPLANATION

(1) Element number
e Corner node
o Midside or center node

Figure 7. Refinement of (a) a six-node triangular element,
{b) an eight-node quadrilateral element, and
{c) a nine-node quadrilateral element.
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in order. The number of degrees of freedom in the front is called
the frontwidth. The frontwidth varies in size during equation
solution, and the maximum frontwidth will determine how much core
memory is required. The sum of the frontwidths squared as each
equation is eliminated is proportional to the number of arithmetic
operations used in the solution. The sequence 1n which the elements
are assembled determines the maximum frontwidth and the sum of the
frontwidths squared and thus determines the core memory requirements
and the computer time needed to solve the system of equations.
Therefore, an element-assembly sequence that keeps the maximum
frontwidth and the sum of the frontwidths squared to a minimum is

essential.

For small networks, a manual determination of an optimal element-
assembly sequence is possible, but for large networks the task quilckly
becomes quite tedious and uneconomical to perform by hand. Two methods
are available in DINMOD to automatically develop an efficient element-

assembly sequence: the minimum—frontgrowth method and the level-

structure method. Since it is virtually Impossible to investigate

all the combinations of element sequences, these algorithms attempt
to provide good, but not necessarily the best, assembly sequences

based on various solutlon strategiles.

Both resequencing methods require an initial 1list of elements
containing at least one element with which to begin the resequencing.
From this starting list, assembly sequences for the remaining

elements are determined. For both methods, several different
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starting element lists should be attempted before a final element~
assembly sequence is accepted. A good initial starting list consists
of all or just some of the elements running across the narrowest

edge of the network.

Minimum-frontgrowth method

The minimum-frontgrowth methed triles to maintain the smallest
possible frontwidth at all times. The initial wavefront 1s determined
from the starting element list and is defined in terms of nodes
rather than degrees of freedom. The nodes forming the wavefront are
those that are attached both to elements that are assembled and to
elements that have not yet been assembled. A list of unassembled
elements lying along this front is formed. The element contained
in this adjacent-element list that gives the smallest frontwidth
upon its assembly is chosen to be the next element assembled. If
more than one element gives the same minimum frontwidth, various
tie~breaking strategies are used to choose between them. Once the
element 1s assembled, the wavefront is modified and the adjacent-
element list is updated. This process continues until all elements

have been resequenced.

Sometimes an element in the adjacent-element list is passed
over for assembly a great number of times. This can lead to
excessively large frontwidths. In order to avoid this situation,
a parameter that coﬁtrols the maximum length of stay of an element

in the adjacent-element list is included. An appropriate value
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for this parameter has to be determined by trial and error, but a
value equal to about twice the expected maximum frontwidth (in
terms of nodes) is a good first try. The maximum frontwidth can
be estimated as the number of nodes in a line across the widest

part of the network when the network is aligned lengthwise.

Level-structure method

The level-structure method uses a simple layer-by-layer
resequencing strategy and is much faster than the minimum—-frontgrowth
method, especially for large networks. As in the previous scheme,

a starting element list is given, and the wavefront as well as a
list of elements adjacent to the wavefront 1s formed. Then, the
first element in the adjacent—element list is assembled, and the
unassembled elements adjacent to it are added to the adjacent—element
list while the first element is removed. This process continues

until all elements have been assembled.

Depth-Averaged Flow Module, FLOMOD

The depth-averaged flow module, FLOMOD, solves the equations of
steady or unsteady two-dimensional surface-water flow in the horizontal
plane. The capabilities of FLOMOD include the following:

e Input of geometric, initial, boundary, wind, and element-
property data.

e Use of either U.S. Customary (inch—-pound) units or
International System (metric) units in all computations.

e Checking of input data for compatibility with array
dimensions.

92



e Solution of the flow equatious.

e Automatic adjustment of the network boundary to allow "dry”
nodes to exist in the network.

e Automatic computation of unit discharge aleng a section
of a network boundary where total discharge across the

section 1s specified as a boundary condition.

e Computation of the flow across specified cross sections and
the computation of continulty norms.

e Printing of results at selected iterations or times. Writing
of a solution output file.

Error Checking

Numerous error checks have been included in the flow module.
These include the following:
e All node, element, element-sequence, and property-type
numbers are checked for compatibility with the appropriate

array dimensions and other program limits.

e Values of Manning's n and the Chezy C are checked to be
sure they are positive.

® A check is made to determine that depths prescribed at
boundaries are positive.

e When a ceiling elevation is given, it 1s checked to make
sure that it is greater than the ground-surface elevation.

® A check is made to be sure that weir and culvert nodes
are boundary nodes.

¢ The maximum frontwidth and the maximum number of equations
are checked for consistency with the appropriate array

dimensions and other program limits.

® An error message is written i1f a zero pivot is found in
solving the finite-element equations.
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Automatic Boundary Adjustment

A feature has been added to FLOMOD to allow elements that are
not fully covered by water to exist in the finite-element network.
Previously, the extent of the submerged area had to be known (or
guessed) in advance, and the finite-element network had to be
designed so that all elements would be completely covered by water
during the simulation. If the depth of water at a node became

negative, computational problems arose.

A conceptually simple scheme to automatically solve the problem
of defining the boundary of the finite-element network has been
added as an option to FLOMOD. This is done by excluding from the

computatioﬂs those elements that are at least partially dry.

To explain how the algorithm determines whether or not an element
should be included in the computations, some terms must be defined.

An element is said to be "on" if it is included in the computation
and is said to be "off" if it 1is not included. A "dry" element is
one that has at least one node at which the flow depth 1s not positive.

A "wet" element 1s one in which all nodes have positive flow depths.

At the beginning of each iteration, each element that is
currently on is checked to see if it is dry. If found to be dry,
that element is turned off. 1In addition, each element that is

currently off is checked to see if it should be turned on.
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The decision to turn on an element is based on the minimum
flow depth and maximum ground-surface elevation at the element's
node points. If the minimum water-surface elevation is greater
than the maximum ground-surface elevation plus some small depth
tolerance, the element is turned on. The need for a depth tolerance
is twofold. First, there will probably be some change in the
water—surface elevation across the element when it is turned on
because of energy losses. Second, the element condition (wet or
dry) may oscillate between iterations resulting in a slowly convergent
or a divergent solutlon. A depth tolerance of 0.5 feet has been
found to provide good results and is used in FLOMOD; however, this
value will depend on the size of the elements in the finite-element

network and the flow conditions.

It is possible that an element that would actually be wet is
turned off in the final solution. However, the depth of flow in
such an element would be small, and the effect of not 1ncluding it
in the computational network would be negligible. The possibility
of this occurring can be minimized by constructing smaller elements
in areas where the computation network boundary is expected to

CCcCur.

The automatic boundary-adjustment feature allows a finite-element
network to be designed without too much concern for the location of
boundaries. However, one must sti1ll be very careful 1In specifying
ground-surface elevations within the network. If the automatic

boundary-ad justment feature is being used and a high node point
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(located on a channel bank in the middle of a flood plain, for
example) becomes dry, all the elements containing that node point
will be turned off for the next iteration. This could significantly
affect the solution unless all the elements turned off were quite

small.

Either slip or né—slip conditions (as specified by the user)
are automatically applied at all existing or newly created boundary
nodes. However, if a velocity, unit discharge, or depth condition
is specified at a node point that is eliminated from the computation
network, and this node is later readmitted for computation, the
boundary condition that was specified at that node will not be
specified again. Therefore, if a velocity, unit discharge, or
water-surface elevation is specified at a node, the user must be
certain that the node will not be removed from the computation
network even temporarily during the automatic boundary—adjustment

process.
The Continuity Norm

A potential problem with mixed interpolation is that mass
conservation is not well enforced because the ratio of discrete
continuity constraints to discrete momentum equations is much

smaller than the coatinuum ratio of 0.5.

Computing the mass flux at model cross sections in steady-state
simulations is one method for determining whether mass-conservation

errors are within acceptable limits. At cross sections where the
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mass flux differs substantially from the inflow, the finite-—element
network can be refined to reduce the errors. An even better method
for determining parts of the network which should be refined to
improve mass conservation 1s the computation of the continuity

norm for each element in the network.

Letting R denote the continuity-equation residual,

aH aU ol av aH
R=—+H—+U —+H—+V — , (109)
at 9x 9x dy dy

the continuity norm 1s defined by

1 1/2

— [ &% da, , (110)

Ae Ae
where A, 1s the element area. The continuity norm will be large for
those elements in which mass-conservation errors are large.
Computation of the continuity norm has been added as an option to
FLOMOD. Norms greater than a user—defined value are flagged with

an asterisk. The network can then be refined in areas where the

continulty norms are large.

Qutput Analysis Module, ANOMOD

The output analysis module, ANOMOD, is the modeling-systen
postprocessor. Its capabilities include the following:
e Plotting of the finite-element network.

e Plotting of velocity or unit—discharge vectors.
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Plotting of ground-surface-elevation contours.
Plotting of water-surface-elevation contours.
Plotting of flow-check lines.

Plotting of time~histories of velocity, unit discharge, or
water-surface elevation at a node point.

Plotting of contours of the difference between water—surface
elevations from two different simulations. This capability
can be used to plot lines of equal backwater.

Plotting of ground-surface elevation, water—surface elevation,
velocity, or unit discharge at a cross section.

Checking of all node and element numbers, time-history node
numbers, the number of flow-check lines, and the number of
element sides for compatibility with appropriate array
dimensions and other program limits.
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APPLYING FESWMS-2DH TO DATA FROM THE FLOOD PLAIN SIMULATION FACILITY

FESWMS—2DH was used to simulate normal and contracted steady
flows in the Flood Plain Simulation Facility at the Gulf Coast

Hydroscience Center near Bay St. Louis, Miss.

This application was designed to answer several questions.
First, how well can the.backwater and discharge distribution
associated with steady flow through a constriction in the Flood
Plain Simulation Facility be modeled under the assumptions of a
simple representation of the kinematic eddy viscosity, a momentum—
correction-coefficient value of unity, and a single linear
representation of Manning's n as a function of depth determined
during normal flow at the same discharge? Second, can a fairly
coarse network be used to accurately simulate backwater and flow
distribution throughout the flow domain? Can such a network be
used to accurately simulate the jet and recirculation downstream
from the opening? Third, can the flux—computation and continuity-
norm options in FLOMOD be used to selectively refine a network to
achleve improved accuracy? The information obtained in answering
these questlons suggests that FESWMS-2DH should be an effective
tool for solving prototype problems involving the design and

analysis of complex highway crossings of flood plains.

Research Facility

The Flood Plain Simulation Facility (FPSF) is an L-shaped basin

approximately 300 ft wide with a straight reach approximately 2,690
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ft long upstream from a right-angle bend to the left and a straight
reach approximately 1,020 ft long downstream from the bend. The bend
has a centerline radius of curvature of 450 ft. A trapezoid-shaped
low-water channel is located in the center of the basin and is
approximately 1 ft deep with a bottom width of 10 ft and side

slopes of 2:1 (H:V). Both edges of the flow basin are bounded by

levees of sufficient height to permit depths of flow up to 3 ft.

The basin was constructed with a uniform downstream design
slope of 0.0004 and with both overbank flow areas sloping toward
the low—water channel with a design slope of 0.00067 to facilitate
drainage. Roughness consists of a fairly dense cover of coastal

Bermuda grass. A diagram of the basin is shown in figure 8.

A constriction that consists of bottom-mounted, movable,
hinged plates is located 1000 ft downstream from the upstream end
of the basin. The hinged plates, each about 3.4 in thick, are
arranged so that when they are raised and fastened into place, a
vertical flat-plate constriction is formed. Except for the plates
in the low-water channel, each plate is about 2.8 ft high, and
except for four smaller transition plates, each is about 10 ft
long. Thus, the opening width can be adjusted in 10-foot increments.

The location of the constriction is shown in figure 8.

Inflow to the basin 1s through an open—-reservoir-type head
basin from three constant-discharge pumps. Each pump has a design

capacity of 70 ft3/s. Water is pumped from a freshwater canal
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adjacent to the facility. Gate valves were installed in two 3-foot
bypass pipes to regulate the return of flow from the head basin

back to the canal. The gate valves were rated in place by current-
meter measurements and were set manually to obtain some of the flow

rates used for the steady-flow experiments.

The water-surface elevation at the downstream end of the
facility is controlled by a movable sharp-crested weir that 1s
located in a 35-foot-wide concrete-lined outlet channel downstrean
of a concrete-lined catchuwent basin 300 ft wide and approximately
10 ft long. The outflow welr was set to minimize backwater and
drawdown. Current-meter discharge measurements were made in the
drainage channel downstream from the outlet gates for each of the

steady-flow experiments.

Data Collection

Water-surface elevation data were collected using 165 dual-line-
type bubble gages located in 15 basin cross sections with 11 points
per cross section. In additlon, 35 additional depth sensors were
located near the constriction between cross sections 750 and 1200.
(Cross—section values refer to the distance in feet from the upstrean
end of the basin.) The depth-collection system was operated on a
6-minute record cycle for all steady-flow experiments, and
approximately 13 records were collected for each steady-flow
experiment. Water—-surface elevations also were obtained from

manual measurements using the 35 staff and crest-stage gages located
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along the rigﬁt bank of the facility and 34 staff and crest-stage
gages located along the left bank. Also, data were collected at
staff gages located on the upstream and downstream sides of each
plate forming the constriction. At least two complete sets of
staff-gage and crest-stage-gage readings were collected for each
steady-flow experiment. Both manually and automatically collected

water—surface-elevation data are accurate to within * 0.02 ft.

Point velocity data were collected automatically at four cross
sections (900, 950, 1050, and 1100) during each steady-flow experiment.
Twenty six current meters (Price pygmy- or AA-type meters) were
located in each cross section. Each current meter was positioned
on a stationary rod at 0.2 of the depth below the water surface
because of grass interference with the bucket wheels at lower
depths and distortioen of the velocity profiles. Overhead wires
connected the current meters to the data assemblers. Velocities
were obtalned from the current—-meter time and revolution data by

the use of a standard rating for the appropriate meter type.

Vertical velocity profiles were collected on both of the
overbanks and in the low-water channel to define the vertical
velocity distribution. The point and profile current—meter data

are accurate to within 5 percent.
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The flow direction at each velocity-measurement point was
determined by attaching a short thread to the back of each current
meter and determining the angle of deflection from the basin's
longitudinal axis. A tag line was set at each cross section to
help in the alignment of the angle reader. The angle data are

considered accurate to within 5 degrees.

Experiments on Flow through Contracted QOpenings

From October to December 1975, data were collected in 33
steady-flow experiments on flow over uniform grass roughness with
concentric contracted openings. These experiments involved five
discharges and four contraction ratios. For each discharge, both
normal and contracted water-surface profiles were measured.
Throughout this series of experiments, the ccastal Bermuda grass

covering the basin was approximately 10 in high.

Before the experimental season began, ground-surface-elevation
data were obtained by differential leveling. Data were collected
every 50 ft longitudinally and every 10 ft laterally. More frequent
lateral measurements were made where necessary to define breaks in
cross—section geometry. 1In addition, the elevations of the sensor
heads and the elevations of the zeroes of the staff gages, including
those on the constriction plates, and the crest-stage gages were

found.

The experiments are summarized in table 3. All experiments

are numbered using an eight-character alphanumeric numbering system.
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The first character, 8, refers to steady flow. The second two digits
are the experiment number. The next four digits record the month

and date of the experiment. The last digit is the last digit of

the calendar year. The experiment number is given In the first
column of table 3. The design and measured discharges are recorded
in the third and fourth columns of the table. The design discharges
ranged from 50 to 210 ft3/s. The grass height is gilven in the

fifth column. Whether the flow was normal (N) or contracted (L) is
recorded in the sixth column. The contraction ratio, m, 1s given

in the seventh column. This ratio is defined as

m=1--, (111)

where b 1s the opening width and B is the total basin width, in
this case 300 ft. The four contractlon ratios used were 0.42,
0.62, 0.82, and 0.95, corresponding to opening widths of 174, 114,

54, and 14 ft, respectively.

During a given week of data collection, the discharge was
held fixed. During the first week, the design discharge was 50
ft3/s; during the second week, it was increased to 70 ft3/s; and
so forth. For a fixed discharge, a normal-flow experiment was
conducted first. Then a concentric contraction was formed by
ralsing the hinged plates. The opening size was decreased as the
week progressed. The final experiment for each discharge was

another normal-flow experiment. During the final week of the
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Table 3. Summary of 1975 steady-flow experiments on flow through
contracted openings.

Experiment Discharge, in Grass Experiment Contraction
number cubic feet per height, type ratio
second in inches (Normal or
Contracted)

Design Measured

55810015 50 47.9 9.8 - N
5910015 50 47.9 9.8 c 0.42
$6010025 50 48.5 9.8 - C 0.62
§6110025 50 48.5 9.8 c 0.82
§6210035 50 47.1 9.8 - c 0.95
56310035 50 47.1 9.8 N
56410085 70 67.8 9.5 N
56510085 70 67.8 9.5 c 0.42
$6610095 70 68.1 9.5 c 0.62
56710095 70 68.1 9.5 c 0.82
S6810105 70 66.6 9.5 C 0.95
$6910105 70 66.6 9.5 4 N
57010215 110 109 10.5 N
§7110215 110 109 10.5 c 0.42
§7210225 110 111 10.5 c 0.62
§7310225 110 111 10.5 C 0.82
$7410235 110 111 10.5 C 0.95
87510235 110 111 10.5 N

$7610295 160 160 10.0 N
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Table 3. Summary of 1975 steady~flow experiments on flow through
contracted openings (continued).

Exper iment Discharge, in Grass Experiment Contraction
number cubic feet per height, type ratio
second in inches (Normal or
gﬁhtracted)

Design Measured

57710295 160 160 10.0 C 0.42
57810305 160 159 10.0 C 0.62
57910305 160 159 10.0 C 0.82
58010315 160 160 10.0 N
S$8111045 210 210 10.0 N
58211045 210 210 10.0 c 0.42
$8311055 210 218 10.0 c 0.62
58411055 210 218 10.0 C 0.82
58511065 210 213 10.0 N
89812155 50 51.7 10.5 N
59912155 70 68.0 10.5 N
50112165 110 105 10.5 N
50212165 160 160 10.5 N
50312175 210 217 10.5 N
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season, normal-flow experiments were repeated for all five discharges.

For a given week of experiments, the appropriate discharge was
set at the headbox, and steady flow was established with all the
constriction plates down. The outflow welr was adjusted to minimize

backwater and drawdown and establish steady, uniform flow.

The current meters were positioned in the vertical 0.2 of the
depth below the water surface. As the current meters were positioned,

the direction of flow at the meter was recorded.

Early in each experiment day, a discharge measurement was made
in the outflow channel. As the automatically collected depth and
current-meter measurements were being recorded, the manually
collected gage and vertical-velocity data were collected. During ™
22 of 33 experiments, an average of 6.4 vertical velocity profiles
were obtained. (No vertical velocity profiles were obtained during

11 of the experiments.)

After the normal-flow experiment was completed, plates were
raised to form the first constriction. When the flow had become
steady, the current meters were repositioned and the angles of flow
recorded. Automatic and manual data were collected as before. The
test cycle continued with constriction changes, meter repositioning,

and data collection until the test series for the week was complete.
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Data Processing

All manually and automatically collected water—-surface-elevation
data were grouped into one composite record for each experiment.
The manually collected data were checked for incorrect elevations,
and a mean elevation was determined from the two readings. These
elevations were assumed to be the true elevation. The automatically
collected elevation data required small corrections to account for
friction losses in the bubble-gage system. The corrections were
determined by comparing the manually collected data to the
automatically collected data for normal-flow experiments. For
these experiments, the water surface at a cross section was known
to be horizontal, and the elevations from the bubble gages could be
compared to the elevations from the staff gages to determine the
corrections necessary to make the water surface at that cross section
horizontal. This correcgion was then applied to all automatically
collected elevation data from both normal-flow and contracted-flow

experiments.

The corrected elevation files were merged to form one water-—
surface-elevation file for each experiment. The elevation data
include data obtained from the automatic bubble-gage sensors, the
staff gages, Ilncluding those on the constriction plates, and the

crest—-stage gages.

The automatically collected velocity data were in the form of

elapsed time and meter revolutions for each current meter. Bad
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data, usually caused by a fouled meter, were deleted, and a mean

for each meter was computed using the remaining data. The mean

time and revolutions for each current meter were converted to
velocities using standard ratings. After conversion, the velocitiles
were checked to ensure that they were reasonable. No attempt was
made to correct or estimate apparently faulty velocities. Such
values were deleted. The final velocity file for each experiment
contains the longitudinal and lateral position of each meter, the
total depth, the fraction of the total depth the meter was located

below the water surface, the flow angle, and the flow speed.

The vertical-velocity-profile data were processed in the field.
The data include the location of the profile observation, the flow
direction, the point velocities, and the depths at which the velocities

were obtained.

Data Analysis

'To use the velocity data collected in the FPSF for calibrating
and verifying two-dimensional, vertically averaged models required
the conversion of the poilnt velocitles measured 0.2 of the depth

below the water surface to vertically averaged velocities.

A correctlon factor was developed on the basis of the vertical
velocity profiles. A total of 140 vértical velocity profiles were
obtained during the 1975 steady-flow experiments. The total included
34 at the design discharge of 70 ft3/s, 53 at 110 ft3/s, 31 at 160

ft3/s, and 22 at 210 ft3/s.
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Figure 9. Vertical velocity profile measured 135 feet from the
right bank at cross section 1050 during experiment
$6810105. The total depth is 1.29 feet.

Tc compute the average velocity corresponding to each profile,
the profile was integrated under the assumptions that the velocity
is linear between measured values, the velocity at the bed is zero,
and the velocity at the water surface can be obtained by linear
extrapolation from the two velocities immediately below the water
surface. One of the profiles is shown in figure 9. The average
velocity was computed by dividing the Integral of the velocity
profile by the total depth. The correction factor for the profile
was then calculated by dividing the average velocity by the velocity

at 0.2 of the depth below the water surface, obtained by interpolation
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from the profile.

Using the data for the 140 profiles, an equation for the
correction factor, f,, was obtained by multiple linear regression.
The regression equation 1s given in terms of three dimensionless

variables: a relative roughness,

k=—, (112)

in which H is the depth at the profile location and Hg is the

height of the grass for the experiment; a Froude number,

Q

— ?
HBYgH

Fl = (113)

in which Q is the measured discharge for the experiment and B is

the width of the basin (300 ft); and a second Froude number,

vlz
Fyp = — , (114}

2]

in which v_5 is the point velocity measured 0.2 of the depth below
the water surface. Because there was little variation in the

height of the grass during the experimental series, a constant

value of Hp equal to 10 in was used in equation 112. The correction
factor is plotted against each of these three dimensionless variables
in figures 10 through 12. It is evident that there 1s significant

scatter in the data and that, consequently, not all the variation
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in the correction factor can bhe explained by the regression equation.

The regression equation for the correction factor, fy, is

fy = = 0.1173 + 0.2063 k + 15.26 F; + 1.869 Fy
= 5.354 kFq + 0.1606 kFy - 4.678 F{Fy

+ 0.007451 k% - 30.60 FZ - 1.959 F2 . (115)

Varlous combinations of these and other dimensionless variables
were tried in the regression analysis, but no other choice of
three or fewer variables explained as much of the variation in the
correction factor as do the three given 1n equations 112 through
114. About 54 percent of the variation in fy is explained by

this regression equation.

All 1975 velocity data were multiplied by the correction
factor, fy. Next, using the corrected point velocities, a discharge,
Qx, was computed at each of the four cross sections where velocity
data were collected. All corrected point velocities in a cross
section were multiplied by the ratio Q/Qy to yield the final
vertically averaged velocities. Thus, a vertically averaged

velocity, v, can be represented as

_ Qfyv.2
v = . (113)
Qx

Typical corrected velocity components are compared with velocity
components which have been corrected only by multiplication by the

factor Q/Qy (called "uncorrected” velocity components in the figure
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Figure 13. Corrected and uncorrected velocity components for
experiment S6410085 at cross section 900.
explanation) in figure 13. Although multiplication by the factor
f, 1lncreases some overbank velocities and decreases others, peak
values in the low—water channel are consistently larger after

correction.

A second approach for obtaining vertically averaged velocities
was tried in which separate regression correction factors were
obtained for the low—water channel and the overbanks. After these
corrections were applied to the point velocities, the cross—sectional
velocities were corrected as in the first method. Because the
difference between the two approaches was negligible, and because

the first approach was simpler, it was used throughout this study.
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Modeling Flood Plain Simulation Facility Data

Model Ground-Surface Elevations

All finite-element networks developed in this study extended
600 ft upstream and dowmnstream from the constriction. Elements
were located so that the trapezoid-shaped low-water channel could

be modeled accurately.

The ground-surface-elevation data at cross sections 50 ft apart
were used to represent the bed at each cross section as a series of
linear segments. By linear regression, straight lines were fit to
the ground-surface—-elevation data on each overbank and on the
bottom of the low-water channel. Then the overbanks were connected
by straight line segments to the channel bottom so that the entire
cross section was represented by five line segments. The data
points and the resulting five—segment representation for cross
section 400 are shown in figure 1l4. Ground-surface elevations for
all finite-element networks were obtained by linear interpolation
between cross sections where ground-surface-elevation data were

available using values from these five—-segment representations.

Modeling Normal Flows

A network was developed first to model the normal-flow experiments
(fig. 15). Most elements in this network were 20-foot-by-20-foot
squares except along the low-water channel, where smaller rectangles

were used to define the channel.
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Figure 1l4. Ground-surface—elevation (GSE) data and model
ground-surface representation at cross section 400,

For each normal-flow experiment modeled, the downstream model
water surface was assumed to be horizontal, and its elevation was
taken as the average observed water-surface elevation there. 1In
all cases, a natural boundary condition was used at the downstream
end. The upstream unit-discharge distribution was chosen to
approximate the unit-discharge distributions at the four cross
sections where observed velocity data were available and to give the
correct total measured discharge. At all solid boundaries, a slip

boundary condition was used.

The flow model was calibrated separately for each of the normal-
. flow experiments S5810015 (47.9 ft3/s), S6410085 (67.8 ft3/s),
$7010215 (109 ft3/s), S7610295 (160 ft3/s), and S8111045 (210 ft3/s)

by adjusting Manning's n, represented as a linear function of depth,
p
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Figure 15. Upstream half of the finite-element network used to model
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Table 4. Values of Manning's n determined by calibration of the
model for normal-flow experiments.

Experiment  Manning's n, Depth, Hy, Manning's n, Depth, Hy,

number nj in feet ny in feet
§5810015 0.263 0.5 0.049 2.5
56410035 0.206 0.5 0.066 2.5
§$7010215 0.139 0.5 0.067 2.5
S$7610295 0.116 0.5 0.063 2.5
S8111045 0.114 0.5 0.040 3.0

Note: Manning's n is interpolated linearly for depths greater than
H{ and less than Hp. The value n] 1s used wherever the depth
is less than or equal to Hy; the value nj is used wherever
the depth is greater than or equal to Hj.

until the upstream water—surface elevation was correct and the

computed velocities at the four data cross sections approximately

matched the observed values. In all computer simulations, the
kinematic eddy viscosity, v, was assigned the value 0.6UzH, where

Ux is the shear velocity (see p. 19) and H is the total depth.

The momentum—correction coefficient was assigned the value unity.

The values of Manning's n determined by calibration are shown
in table 4. Manning's n is interpolated linearly for depths greater
than H{ and less than Hy. For depths less than or equal to Hip,
the value n] is used, and for depths greater than or equal to Hjp,
the value ny is used. Computed and observed water-surface elevations

for experiments S5810015, $6410035, and S7010215 are shown in
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figures 16 through 18, and the computed and observed velocity
components for the same three experiments are shown in figures 19

through 30.
Modeling Constricted Flows

Flows through the l4-foot contracted opening were modeled next.
In these experiments, the entire flow was forced into the low-water
channel at cross section 1000. All three experiments conducted at
this contraction ratio were simulated: 56210035, S6810105, and
§7410235. Because of the large contraction ratio (0.95), flow
conditions vary greatly in a short distance and the.convective
terms in the equations of motion are significant. Thus, modeling
these three experiments with a range of coarse to fine networks

illustrates the relationship between the degree of network refinement
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for experiment 55810015.
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Figure 19. Observed and computed velocity components at cross
section 900 for experiment 55810015.
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Figure 20. Observed and computed velocity components at cross
section 950 for experiment $5810015.
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section 1050 for experiment S5810015.
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Figure 22. Observed and computed velocity components at cross

section 1100 for experiment S5810015.
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Figure 23. Observed and computed velocity components at cross
section 900 for experiment $6410085.

0.8 T T T T T

08 - COMPUTED X-VELOCITY 1

------- COMPUTED Y—-VELOCITY
D OBSERVED X—VELOCITY
0 OBSERVED Y--VELOCITY

VELOCITY, IN FEET PER SECOND

—027 L i L L L
0 50 100 150 200 250 300

DISTANCE. FROM LEFT BANK, IN FEET

Figure 24. Observed and computed velocity components at cross
section 950 for experiment S$6410085.
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Figure 25. Observed and computed veloc”: y components at cross
section 1050 fotr experiment 56410085.
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Figure 26. Observed and computed velocity components at cross
section 1100 for experiment 56410085,
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Figure 27. (Observed and computed velocity components at cross
section 900 for experiment §7010215.
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Figure 28. Observed and computed velocity components at cross
section 950 for experiment $7010215.
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Figure 29. Observed and computed velocity components at cross
section 1050 for experiment S57010215.

0.8 - T Lo —T— T
[=}
% 06 |- COMPUTED X—VELOGITY 1
------- COMPUTED Y—VELOCITY
§ O OBSERVED X—VELOCITY o
th O OBSERVED Y—VELOCITY
=z
&)
I
> 00 - L sk - AL (TLLE - Al « Rt < i e+ 2 1 I -1 o o oY o0
o o]
o
—02 1 i 1 1 1
0 50 100 150 200 250 300

DISTANCE FROM LEFT BANK, IN FEET

Figure 30. Observed and computed velocity components at cross
section 1100 for experiment S7010215.
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and solution accuracy when nonlinear effects are important.

To test the dependence of the solution on network detail, four
networks were developed for the l4-foot opening. They are shown in
figures 31 through 34, Only the part of each network between the
right bank and the basin centerline and between cross sect;ons 900
and 1000 is shown. The part of the network upstream from cross
section 900 is identical to the same part of the normal-flow network
(fig. 15). Each network is symmetric about both the basin centerline
and the constriction {cross section 1000). 1In each network, the
constriction is represented as a plate of zero thickness. Each of
the four has successively greater detail at and near the opening.

In network 1, four elements are used to span the opening; in networks

2 and 3, eight elements; and in network 4, 12 elements.

The values of the mass flux at model cross sections and the
values of the element continuity norm were used in the development
of these networks. The mass-conservation error at the contracted
opening for each of the three experiments and each of the four
networks is shown in table 5. The refinement of the network at and
near the opening was effective in reducing the mass-conservation
errors there. FElements for which the continuity norm for experiment
§7410235 exceeded 0.1 are shaded in figures 31 through 34. The
value of the continuity'norm was used as a gulde to where the
addition of network detail would be most effective in reducing

errors.
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Figure 31. Part of the right half of finite-element network 1
upstream from the constriction. The continuity norm
exceeds 0.1 on the shaded elements for the simulation
of experiment 57410235 with the calibrated parameters.
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Figure 32. Part of the right half of finite-element network 2
upstream from the constriction. The continuity norm
exceeds 0.1 on the shaded elements for the simulation
of experiment 857410235 with the calibrated parameters.
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Figure 33. Part of the right half of finite-element network 3
upstream from the constriction. The continuity norm
exceeds 0.1 on the shaded elements for the simulation
of experiment 57410235 with the calibrated parameters.
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Figure 34. Part of the right half of finite-element network 4
upstream from the constriction. The continuity norm
exceeds 0.1 on the shaded elements for the simulation
of experiment 57410235 with the calibrated parameters.
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Table 5. Computed discharge at the l4-foot contracted opening
for three discharges and four networks.

Experiment Discharge at contracted opening,
nunber as percent of total inflow

Network 1 Network 2 Network 3 Network 4

56210035 85.7 91L.9 97.7 97.7
56810105 82.2 89.8 97.4 97.4
57410235 78.4 87.2 96.9 96.9

For each simulation, the downstream model water surface was
assumed to be horizontal, and its elevation was taken as the average
observed water—surface elevation there. As before, a natural boundary
condition was used. For a given design discharge, the upstream
unit—-discharge distribution ﬁsed in the corresponding normal-flow
simulation was multiplied by a constant factor to give the upstream
discharge distribution used in the contracted—opening simulation.
This factor was chosen to give the correct total measured discharge.
A slip boundary condition was used along all solid boundaries
except at the four corners formed by the the intersection of the
constriction with the left and right banks, where the wvalues of
both components of velocity were set to zero. Where the ends of
the constriction met the top of the low-water channel, the velocity

was forced to be tangential to the constriction boundary.

-
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In each simulation involving a given design discharge, the
linear representation of Manning's n was used that was determined
in the calibration simulation for that design discharge. As in
the normal-flow simulations, the kinematic eddy viscosity, ¥V, was
assigned the value 0.6UxH and the momentum—correction coefficient, B,

was assigned the value unity.

Water-surface elevations are shown for experiment $6210035 in
figures 35 through 38 for the four networks. The differences among
the four sets of computed elevations are quite small. Only a minor
improvement was achieved by using the finer networks. Near the
opening, the observed backwater was computed fairly well for networks
1 and 2 and very accurately for networks 3 and 4. Away from the
opening in the lateral direction, computed water—surface elevations
are up to 0.02 ft lower than observed water-surface elevations on
the upstream side of the constriction. On the downstream side,
computed water—-surface elevations are up t§ 0.04 ft lower than the

observed values.

Computed and observed velocity profiles at cross sections 900,
950, 1050, and 1100 for the four networks are shown in figures 39
through 54. Again, differences among the results for the four
networks are minor. 1In all cases, the computed profiles upstream
are very accurate. Downstream from the constriction, the computed
peak velocity in the low-water channel is 32 percent lower than
the observed peak velocity at cross section 1050 and 17 to 18

percent lower at 1100. The profiles at cross section 1050 show
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Figure 36. Observed and computed water—surface elevations (WSE)

for experiment $6210035, calibrated parameters, network 2.
The letters U and D refer, respectively, to the upstream
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Figure 37. Observed and computed water—surface elevations (WSE)

for experiment 56210035,
The letters U and D refer,

side and the downstream side of the constriction.

calibrated parameters, network 3.
respectively, to the upstream

g za . r r . "
—— COMPUTED WSE AT CROSS SECTION 400 0 OBSERVED WSE AT CROSS SECTION 400
5 ------- COMPUTED WSE AT CROSS SECTION 950 O OBSERVED WSE AT CROSS SECTION 280
] == COMPUTED WSE AT CROSS SECTION 1000U A OBSERVED WSE AT CROSS SECTION 1000U
W 76 =+—~-=— COMPUTED WSE AT CROSS SECTION 1000D + OQBSERVED WSE AT CROSS SECTION 10000
% s=--= COMPUTED WSE AT CROSS SECTION 1030 X QBSERVED WSE AT CROSS SECTION 1050
@ —-=—= COMPUTED WSE AT CROSS SECTION 1800 © OBSERVED WSE AT CRQSS SECTION 1800
<C
E 4 o Jul ] o =} =] n _
=
3 BA AP & & 8.8 2 & 84
é £ P W W Ry :K"""n"u;£3u¢=A.LJLawA-—~~JL 8]
< 2zt l i B
[ZaY]
E . Fg + F ¢+ Lo+ e A L A R I T &
Lot
[&]
&
g vor . 1
(_? f~ B e == B L ittt P SRR - A S S " o [
g 28.8 L 1 i L L
0 50 100 200 250 300
DISTANCE FROM LEFT BANK, IN FEET
Figure 38. Observed and computed water-surface elevations (WSE)

for experiment 56210035, calibra

side and the downstream side of

138

ted parameters,

the constriction.

network 4.
The letters U and D refer, respectively, to the upstream



12 T T T T 1

- GOMPUTED X—VELOCITY
e GCOMPUTED Y--VELOCITY

A 11 OBSERVED X—VELOCTY h
0 OBSERVED Y--VELOCITY

08 - -

VELOCITY, N FEET PER SECOND

] 50 106 150 200 250 300
DISTANGCE FROM LEFT BANK, IN FEET

Figure 39. Observed and computed velocity components at cross
section 900 for experiment 56210035, calibrated
parameters, network 1.
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Figure 40. Observed and computed velocity components at cross
section 900 for experiment $6210035, calibrated
parameters, network 2.
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Figure 41. Observed and computed velocity components at cross
section 900 for experiment S6210035, calibrated
parameters, network 3.
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Figure 42. Observed and computed velocity components at cross
section 900 for experiment S$S6210035, calibrated
parameters, network 4.
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Figure 43. Observed and computed velocity components at cross
section 950 for experiment $6210035, calibrated
parameters, network 1.
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Figure 44. Observed and computed velocity components at cross
section 950 for experiment S$6210035, calibrated
parameters, network 2.
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Figure 45. Observed and computed velocity components at cross
section 950 for experiment 56210035, calibrated
parameters, network 3.
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Figure 46. Observed and computed velocity components at cross
section 950 for experiment S$6210035, calibrated
parameters, network 4.
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Figure 47. Observed and computed velocity components at cross
section 1050 for experiment $6210035, calibrated
parameters, network 1.
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Figure 48. Observed and computed velocity components at cross
section 1050 for experiment S$6210035, calibrated
parameters, network 2.
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Figure 49, Observed and computed velocity components at cross
section 1050 for experiment 56210035, calibrated
parameters, network 3.
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Figure 50. Observed and computed velocity components at cross
section 1050 for experiment 856210035, calibrated
parameters, network 4.
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Fipure 51. Observed and computed velocity components at cross
section 1100 for experiment $6210035, calibrated
parameters, network 1.
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Figure 52. Observed and computed velocity components at cross
section 1100 for experiment 56210035, calibrated
parameters, network 2.
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Figure 53. Observed and computed velocity companents at cross
section 1100 for experiment 56210035, calibrated
parameters, network 3.
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Figure 54. Observed and computed velocity components at cross
section 1100 for experiment $6210035, calibrated
parameters, network 4.
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that the jet downstream from the contracted opening has dissipated
too rapidly. The magnitudes of the computed overbank velocity
components in both the x- and y-directions are too large at cross
section 1050, but the magnitudes of the overbank velocity components
in the y—-direction are too small at cross section 1100. Network 4
was developed with greater detail farther away from the opening in
order to determine whether the jet—dissipation problem was caused

in part by an insufficiently fine grid. Figures 50 and 54 show
that lack of network detail is not the cause of the problem. We

will return to this subject later.

Partial velocity flelds for the four networks are shown in
figures 55 through 58. These velocity fields extend from the basin
centerline 28 ft toward the right bank and from the coustrictiocn 20
ft downstream. Few differences are evident except that for networks
3 and 4, there is sufficient detail just downstream of the constriction
for a small recirculation zone to appear. The stagnation polnt on the
downstream side of the constriction is located about 138 ft from

the right bank for networks 3 and 4.

Water—surface elevations are shown for experiment S$6810105 in
figures 59 through 62 for the four networks. The improvement in the
computed water-surface elevations due to network refinement is more
eQident in this case than for experiment $6210035. The computed
baékwater is slightly low for networks 1 and 2 but quite accurate for
the more detailed netwerks 3 and 4. There is virtually no difference

between the water-surface elevations for networks 3 and 4. For
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Figure 59. Observed and computed water—surface elevations (WSE)

for experiment S6810105, calibrated parameters, network 1.
The letters U and D refer, respectively, to the upstream
side and the downstream side of the constriction.
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Figure 60. Observed and computed water—surface elevations (WSE)

for experiment S6810105, calibrated parameters, network 2.
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Figure 6l. Observed and computed water—surface elevations (WSE)

for experiment S$6810105, calibrated parameters, network 3.
The letters U and D refer, respectively, to the upstream
side and the downstream side of the constriction.
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these two networks, computed water—-surface elevations average about
0.01 ft lower than observed water-surface elevatlions on both the

upstream and downstream sides of the constriction.

Velocity profiles at cross sections 900, 950, 1050, and 1100
are shown in figures 63 through 78. As before, differences among
the results for the four networks are minor. The magnitudes of the
computed overbank velocity components in the y-direction at cross
section 950 are too large. There 1s no apparent explanation for this.
The observations about the dissipation of the jet and the overbank
velocity components at cross sections 1050 and 1100 made for the
simulations of experiment 56210035 also apply in this case. Downstream
from the constriction, the computed peak velocity in the low-water
channel is 47 percent low at cross section 1050 and 43 to 44 percent

low at cross section 1100.

Partial velocity fields for the four networks are shown in
figures 79 through 82. Oscillations due to the coarseness of the
network are evident in figures 79 and 80 but disappear in figures
81 and 82. As before, a recirculation zone, larger than that for
the $6210035 simulation, appears for networks 3 and 4. The stagnation
point on the downstream side of the constriction 1s located about

133 ft from the right bank for networks 3 and 4.

Water-surface elevations are shown for experiment S$7410235 in
figures 83 through 86. The improvement in computed water—surface

elevations due to network refinement is even more evident in this
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Figure 63. Observed and computed velocity components at cross
section 900 for experiment S6810105, calibrated
parameters, network 1.
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Figure 64. Observed and computed velocity components at cross
section 900 for experiment 56810105, calibrated
parameters, network 2.
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Figure 65. Observed and computed velocity components at cross
section 900 for experiment $6810105, calibrated
parameters, network 3.
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Figure 66. Observed and computed velocity components at cross
section 900 for experiment $6810105, calibrated
parameters, network 4.

156



10 l— J

COMPUTED X~VELOCITY

S COMPUTED Y—VELOCITY
8 F D OBSERVED X—VELOCITY
© OBSERVED Y-VELOCITY

VELOCITY, IN FEET PER SECOND

) 50 100 150 200 250 300
DISTANCE FROM LEFT BANK, IN FEET

Figure 67. Observed and computed velocity components at cross
section 950 for experiment 56810105, calibrated
parameters, network l.
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Figure 68. Observed and computed velocity components at cross
section 950 for experiment 56810105, calibrated
parameters, network 2.
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Observed and computed velocity components at cross
section 950 for experiment S$6810105, calibrated
parameters, network 3.
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Observed and computed velocity components

section 950 for experiment $6810105, calibrated
parameters, network 4.
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Figure 71. Observed and computed velocity components at
sectlon 1050 for experiment $681010%, calibrated
parameters, network 1.
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Figure 72. Observed and computed velocity components at

section 1050 for experiment $6810105, calibrated
parameters, network 2.
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Figure 73. Observed and computed velocity components at cross
section 1050 for experiment S6810105, calibrated
parameters, network 3.
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Figure 74. Observed and computed velocity components at cross
section 1050 for experiment S6810105, calibrated
parameters, network 4.
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Figure 75. Observed and computed velocity components at cross
section 1100 for experiment 56810105, calibrated
parameters, network 1.
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Figure 76. Observed and computed velocity components at cross
section 1100 for experiment 56810105, calibrated
parameters, network 2.
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Figure 77. Observed and computed velocity components at cross
section 1100 for experiment S6810105, calibrated
parameters, network 3.
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Figure 78. Observed and computed velocity components at cross
section 1100 for experiment S6810105, calibrated
parameters, network 4.
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Figure 79. Partial velocity field for experiment $6810105,
calibrated parameters, network 1. A vector 1 inch
long represents a velocity of 4 feet per second.
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Figure 80. Partial velocity field for experiment S6810105,
calibrated parameters, network 2. A vector 1 inch
long represents a velocity of 4 feet per second.
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Figure 83. Observed and computed water—-surface elevations (WSE)

for experiment 87410235, calibrated parameters, network 1.
The letters U and D refer, respectively, to the upstream
side and the downstream side of the constriction.
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Figure 84. Observed and computed water-surface elevations (WSE)

for experiment 87410235, calibrated parameters, network 2.
The letters U and D refer, respectively, to the upstream
side and the downstream side of the constriction.
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Figure 85. Observed and computed water-surface elevations {WSE)

for experiment S7410235, calibrated parameters, network 3.
Tbe letters U and D refer, respectively, to the upstrean
side and the downstream side of the constriction.
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case than for experiment S6810105. The computed backwater is low
for networks 1 and 2 but very accurate for networks 3 and 4.
Again, there is virtually no difference between the results for

network 3 and those for network 4.

Velocity profiles at cross sections 900, 950, 1050, and 1100
are shown in figures 87 through 102. Comparing figure 87 with
figures 39 and 63 shows that for network 1, oscillations develop
as discharge and hence velocity and depth gradilents increase.

These velocity oscillations disappear for the more refined networks.
Differences among the results for networks 2, 3, and 4 are minor.
The observations about the dissipation of the jet and the overbank
velocity components at cross sectilions 1050 and 1100 made above
apply again. Downstream from the constriction, the computed peak
velocity in the low-water channel is 41 to 46 percent low at cross

section 1050 and 62 to 64 percent low at cross section 1100.

Partial velocity fields for the four networks are shown in
figures 103 through 106. The oscillations seen in the velocity
profiles for network 1 are evident in the shear region between the
jet and the recirculation zone for both networks 1 and 2. These
oscillations are not evident in the results for networks 3 and 4.
The stagnation point on the downstream side of the constriction is
located about 121 ft from the right bank for network 2, about 117
ft from the right bank for network 3, and about 119 ft from the
right bank for network 4. The recirculation zone is substantially

larger for this discharge than it was for the smaller discharges.

169



12 L] t T 1 T

to | .

———  COMPUTED %—VELOGITY
------- COMPUTED Y—VELDGITY
o8 I 0 OBSERVED X—VELOGTY
O OBSERVED Y-VELOGTY

VELOCITY, IN FEET PER SECOND

0 50 100 50 200 250 300
DISTANCE, FROM LEFT BANK, IN FEET

Figure 87. Observed and computed velocity components at cross
section 900 for experiment 57410235, calibrated
parameters, network 1.
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Figure 88. Observed and computed velocity components at cross
section 900 for experiment S7410235, calibrated
parameters, network 2.
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Figure 89. Observed and computed velocity components at cross
section 900 for experiment $7410235, calibrated
parameters, network 3.
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Figure 90. Observed and computed velocity components at cross
section 900 for experiment 57410235, calibrated
parameters, network 4.
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Figure 91. Observed and computed velocity components at cross
section 950 for experiment 57410235, calibrated
parameters, network 1.
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Figure 92. Observed and computed velocity components at cross
section 950 for experiment 57410235, calibrated
parameters, network 2. '
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Figure 93. Observed and computed velocity components at cross
section 950 for experiment 57410235, calibrated
parameters, network 3.
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Figure 94. Observed and computed velocity components at cross
section 950 for experiment 57410235, calibrated
parameters, network 4.

173



3.6 T T T T T

32t -
28 h B
g o —————  COMPUTED X—VELOCTY
S a4k B e COMPUTED Y—VELOCITY i
e O OBSERVED X—~VELOCTY
7] o © OBSERVED Y-VELOGITY
5 20 | o i
o
E 16 |
lﬂ ‘_2 -
r4
E‘ o8 |
o
g 04 |
>
oo leo"" o o
-0.4 [
—D.8 J L. L L L
0 50 100 150 200 250 300

DISTANCE FROM LEFT BANK, IN FEET

Figure 95. Observed and computed velocity components at cross
section 1050 for experiment 57410235, calibrated
parameters, network 1.
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Figure 96. Observed and computed velocity components at cross
section 1050 for experiment 57410235, calibrated
parameters, network 2.
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Figure 97. Observed and computed velocity components at cross
section 1050 for experiment 57410235, calibrated
parameters, network 3.
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Figure 98. Observed and computed velocity components at cross
section 1050 for experiment $7410235, calibrated
parameters, network 4.
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Figure 99. Observed and computed velocity components at cross
section 1100 for experiment S7410235, calibrated
parameters, network 1.
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Figure 100. Observed and computed velocity components at cross
section 1100 for experiment S$7410235, calibrated
parameters, network 2.
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Figure 101. Observed and computed velocity components at cross
section 1100 for experiment $7410235, calibrated
parameters, network 3.
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Figure 102. Observed and computed velocity components at cross
section 1100 for experiment $7410235, calibrated
parameters, metwork 4.
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The results presented above show that a sufficiently refined
network is necessary to compute backwater accurately and to avoid
oscillations in the velocity field. For all three discharges
modeled, network 3 is sufficiently refined to support converged
solutions to the flow equations. For the converged solutions,
FLOMOD is able to simulate quite accurately most water-surface
elevations throughout the study reach and most velocities upstream
from the constriction. However, as discussed above, the jet
downstream from the constriction dissipates too rapidly in the
model, resulting in peak velocities in the low-water channel that

are substantially lower than the corresponding observed values.

It was hypothesized that two major factors contributed to
those discrepancies. First, the actual values of the momentum—
correction coefficients are substantially larger than unity, the value
used in the simulations discussed above. Using more realistic
values might improve the results. Second, the values of Manning's
n for the jet downstream from the constriction are probably smaller
than those determined in the calibration process because the grass
in the jet was flattened by the high velocities there. Reducing
the values of n in the jet might increase the computed peak velocities

there.

Additional simulations using network 3 were carried out to
test these hypotheses. First, for each of the three experiments
used above, a more realistic value of the momentum—correction

coefficient, B, was determined. For each of the 140 vertical
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velocity profiles collected during the 1975 experimental series,
8 was computed from equation 8. This was done by applying to the
squares of the point velocities the numerical integration procedure
used to integrate the velocity profiles (see p. 111). Because no
vertical velocity profiles had been collected for the design discharge
of 50 ft3/s, f was regressed on the measured discharge to give a
linear equation which was used to obtain values of B of 1.64,

1.59,

and 1.48 for experiments S6210035, 56810105, and 57410235,

respectively.

These values were then used in simulations of experiments

56210035, 56810105, and S§7410235. In these simulations, all other

parameters were the same as in the simulations presented above.
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Figure 107. Obgerved and computed water-surface elevations (WSE)
for experiment $6210035, B = 1.64, network 3. The letters
U and D refer, respectively, to the upstream side and the
downstream side of the constriction.
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Figure 108. Observed and computed velocity components at cross
section 900 for experiment 56210035, B = 1.64, network 3.
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Figure 109. Observed and computed velocity components at cross
section 950 for experiment $6210035, B = 1.64, network 3.
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Figure 110. Observed and computed velocity components at cross
section 1050 for experiment 56210035, B = l.64, network 3.
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Figure 111, Observed and computed velocity components at cross
section 1100 for experiment S$6210035, B = 1.64, network 3.

185



DISTANCE FROM RIGHT BANK, IN FEET

150

oyl Ay A MRy, P, — —— S——
/ e S — S — — —~— —
/‘*——*‘\\\\ — —— ~— ~—
/2-%\-\\\ S~ S~ — S—
TEESS NN NN ~ ~ ~ ~
s NN N N NS
| 2 S T T S L% \ \ \ \ \ \ \ \
| 0 T T O Y \ \ \ \ \ \ N
[ I I I B 1 t 1 \ \ \ \ \
] L 300 I Y L » ! 1 1 1
138
] * - - ] 2 ! 1 ‘ \ \
» - - - » F J ] ? '
I Y ! ' | t
134‘ . - » - » ) r ? !
. PY . » P P4 F 4 ? H 1 t
» " » ’ ? ’ ?
130 . ’ , ’ ! ! 1 !
. ’ ’ ’ 4 ] ! 1
126
T ? ? ! ! ] 1 1
t ] ? 1 H 1
122
1000 1004 1008 1012 1016 1020

DISTANCE FROM UPSTREAM END, IN FEET

Figure 112, Partial velocity field for experiment 56210035,
B = 1.64, network 3. A vector 1 inch long represents
a velocity of 4 feet per second.

186



Using a value of B greater than unity does not affect the results
of the calibration simulations because the convective terms vanish
for uniform flows. Water—surface elevations, velocity profiles at
cross sections 900, 950, 1050, and 1100, and a partial velocity
field for 86210035 are shown in figures 107 through 112; for
S6810105 in figures 113 through 118; and for 57410235 in figures

119 through 124.

All three simulations show similar changes. There are small
decreases in peak velocities at cross sections 900 and 950 and
relatively larger increases in peak velocities at cross sections
1050 and 1100. However, the peak velocities computed at cross

sections 1050 and 1100 are still substantially less than the observed
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Figure 113. Observed and computed water—surface elevations (WSE)
for experiment S$6810105, g = 1.59, network 3. The letters
U and D refer, respectively, to the upstream side and the
downstream side of the constriction.
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Figure 114, Observed and computed velocity components at cross
section 900 for experiment $6810105, B = 1.59, network 3.
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Figure 115. Observed and computed velocity components at cross
section 950 for experiment $6810105, 8 = 1.59, network 3.
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Figure 116. Observed and computed velocity components at cross
section 1050 for experiment S$6810105, 8 = 1.59, network 3.
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Figure 117. Observed and computed velocity components at cross
section 1100 for experiment S§6810105, 8 = 1.59, network 3.
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values there. Minor improvements are also evident in the velocity
components in the y—direction at cross sections 1050 and 1100.

The recirculation zones in all three simulations are larger than
in the previous simulations. The stagnation point is located
about 133 ft from the right bank for this simulation of experiment
56210035, about 124 ft from the right bank for experiment S6810105,
and about 102 ft from the right bank for experiment §7410235.
Thus, increasing the value of § has moved the stagnation point
about 5 ft closer to the right bank for experiment 56210035, about
9 ft closer for experiment 36810105, and about 15 ft closer for
experiment $57410235. While the velocity profiles show some

improvement, the water—surface elevations are not simulated as
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Figure 119. Observed and computed water—surface elevations (WSE)
for experiment S$7410235, B = 1.48, network 3. The letters
U and D refer, respectively, to the upstream side and the
downstream side of the constriction.
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‘Figure 120. Observed and computed velocity components at cross
section 900 for experiment 57410235, B = 1.48, network 3.
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Figure 121. Observed and computed velocity components at cross
section 950 for experiment 57410235, B = 1.48, network 3.
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Figure 122. Observed and computed velocity components at cross
section 1050 for experiment $7410235, B = 1.48, network 3.
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well., There is an overestimation of the fall through the opening

in all three cases.

These simulations also show that increasing the value of the
momentum—-correction coefficient has a proportionately greater
effect as discharge increases and consequently velocity and depth
gradients increase. Thus, improvements in peak velocities and
deterioration in water—surface elevations are proportionately
greater in the simulation of experiment 57410235 than in the

simulation of experiment 56210035.

Next, the effect of reducing the value of Manning's n where
the velocities are large was investigated. The values of the
momentum—correction coefficient used above were also used in these
simulations. For each of the three experiments, an iterative
process was performed in which the two values of Manning's n
determined in calibration {table 4) were reduced by the same fraction
for those elements on which computed velocities initially exceeded
1.0 ft/s. An inner iteration was performed until the computed and
observed peak Qelocities at cross sections 900, 950, 1050, and
1100 were in good agreement. In addition, as velocities changed,
an outer iteration was performed during which elements were included
in or dropped from the group of elements for which the values of

Manning's n were modified.

In all three cases, although Manning's n was reduced independently

in each, a 31 percent reduction in the values of Manning's n where
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velocitles exceeded 1.0 ft/s was required to bring computed and
observed peak velocities Into agreement. At the end of the iterative
process, computed velocities in all three cases exceeded 1.0 ft/s
only in the low-water channel. For experiment 56210035, these
elements were located between cross sections 985 and 1060; for

36810105, between 982.5 and 1100; and for S$7410235, between 982.5

and 1200.

Water-surface elevations; velocity profiles at cross sections
900, 950, 1050, and 1100; and a partial velocity field for 56210035
are shown in figures 125 through 130; for S6810105 in figures 131

through 136; and for S7410235 in figures 137 through 142.
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Figure 126. Observed and computed velocity components at cross
section 900 for experiment $6210035, 3 = 1.64,
Manning's n reduced where velocities exceed
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Figure 127. Observed and computed velocity components at cross
section 950 for experiment 56210033, B = 1.64,
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1 foot per second, network 3.
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In all three cases, the computed peak velocities at cross
sections 1050 and 1100 are much larger than before and close to
the observed values. The peak velocities computed at cross sections
900 and 950 are about the same as in the simulations with the
realistic values of the the momentum—correction coefficient. The
magnitudes of the computed velocity component in the y-direction
are much closer to the observed values at cross section 1100 and,
for experiment S$7410235, at cross section 1050. For experiments
$6210035 and S6810105, the magnitudes of the velocity component in
the y-direction are still larger than the observed values at cross
section 1050. 1In all three cases, the recirculation zones are

nmuch larger than in both the initial simulations and the simulations
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Figure 131l. Observed and computed water-surface elevations (WSE)
for experiment S6810105, B = 1.59, Manning's n reduced
where velocities exceed 1 foot per second, network 3.

The letters U and D refer, respectively, to the upstream
side and the downstream side of the constriction.
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Figure 132. Observed and computed velocity components at cross
section 900 for experiment 56810105, g = 1.59,
Manning's n reduced where velocities exceed
1 foot per second, network 3.
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Figure 133. Observed and computed velocity components at cross
section 950 for experiment $6810105, 8 = 1.59,
Manning's n reduced where velocities exceed
1 foot per second, network 3.
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Figure 134. Observed and computed velocity components at cross
section 1050 for experiment S$6810105, B = 1.59,
Manning's n reduced where velocities exceed
1 foot per second, network 3.
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Figure 135. Observed and computed veloclty components at cross
section 1100 for experiment $68L0105, g = 1.59,
Manning's n reduced where velocities exceed
1 foot per second, network 3.
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Figure 136. Partial velocity field for experiment 56810105,
g = 1,59, Manning's n reduced where velocities exceed
1 foot per second, network 3. A vector 1 inch long
represents a velocity of 4 feet per second.
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with the larger values of the momentum-correction coefficients.

The stagnation point is located about 126 ft from the right bank

for this.éimulation of experiment S$6210035, about 112 ft from the
right bank for experiment S6810105, and about 75 ft from the right
bank for experimént 57410235, Thus, compared with the calibration
simulations, using more realistic values of B and reducing Manning's
n where velocities exceeded 1.0 ft/s has moved the stagnation

point about 12 ft closer to the right bank for experiment 56210035,
about 21 ft closer to the right bank for experiment 56810105, and

about 42 ft closer to the right bank for experiment S7410235.

Part of the increase in water—surface elevations upstrean

from the constriction due to increasing the values of the momentum-
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Figure 137. Observed and computed water-surface elevations (WSE)
for experiment 57410235, B = 1.48, Manning's n reduced
where velocities exceed 1 foot per second, network 3.

The letters U and D refer, respectively, to the upstream
side and the downstream side of the constriction.
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Figure 138. Observed and computed velocity components at cross
section 900 for experiment $7410235, B = 1.48,
Manning's n reduced where velocities exceed
1 foot per second, network 3.
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Figure 139. Observed and computed velocity components at cross
section 950 for experiment $7410235, 8 = 1.48,
Manning's n reduced where velocities exceed
1 foot per second, network 3.
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Figure 140. Observed and computed velocity components at cross
section 1050 for experiment S$7410235, g = 1.48,
Manning's n reduced where velocities exceed
1 foot per second, network 3.
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Figure 141. Observed and computed velocity components at cross
section 1100 for experiment 57410235, B = 1.48,
Manning's n reduced where velocities exceed
1 foot per second, network 3.

206



DISTANCE FROM RIGHT BANK, IN FEET

150
ems oS E I P —
“ N "——r — —— -
SOOIN ~— ~ ~~ ~
138 TV (S NN
I v 00 e
PRy ) ) SN ~N
151wy LS WY -
[ O T T Y Y
| S T T T Y S T ¥ h ] ] ’ 1 \
T S T Y Y N T -
126 (I N I T T T - - t 1
1 | T T ) A Y -
1) 1Y + * - - - > ! '
114 13 1 ] v . ~ - - ~ ?
] L A ] * - - - ’ !
» L - - - ~ ’
102
. - - » F] I3
90 . 3 - ’ » ]
. & » [4 ’ ’
78
. ] . * ] [ ]
66
1000 1012 1024 1036 1048 1060

DISTANCE. FROM UPSTREAM END, IN FEET

Figure 142. Partial velocity field for experiment 57410235,
8 = 1.48, Manning's n reduced where velocities exceed
1 foot per second, network 3. A vector 1 inch long
represents a velocity of 4 feet per second.

207



correction coefficient is eliminated in these three slmulations.
The computed water—surface elevations just upstream from the
constriction are about 0.0l ft lower than the observed values for
experiment $6210035, about 0.02 ft higher than the observed values
for experiment 56810105, and about 0.1 ft higher than the observed

values for experiment $7410235.

Several observations can be made on the basis of the results
presented above. Decreasing the values of Manning's n in the jet
downstream from the constriction has a greater effect on peak
velocities than it does on backwater. A decrease in the values of
n is partially offset by velocity Increases, so losses due to bed
friction at the opening decrease only slowly as the values of Manning's
n are lowered. On the other hand, when the convective terms are
significant near the opening, increasing the value of the momentum-
correction coefficient ralses peak velocities in the jet without
any compensating reduction in the values of n, and backwater Increases

significantly.

The remaining errors in the calculation of backwater may be due
to the likelihood that the single values of the wmomentum—correction
coef%icients used Iin simulating the three experiments may not be
correct near the opening. In particular, the overestimation of
watef-surface elevations just upstream from the constriction for
experiment $7412035 (fig. 137) may be due to the fact that the

value of the momentum—correction coefficient is based on vertical

velocity profiles collected throughout the FPSF. The only place
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the momentum-correction coefficient is significant‘is near the
cpening, where the convective terms are important. The higher
velocities there, which flatten the grass and probably result in
smaller values of Manning's n, probably also result in smaller

values of the momentum-correction coefficient than the values that
are representative of the entire FPSF. Errors in the values of

the momentum—correction coefficient would tend to have a
proportionately greater effect for the larger discharge of experiment
S§7410235 than for the smaller discharges of expériments S6210035

and S6810105.
Sensitivity Analyses

A sensitivity analysis was performed for the flow model of
experiment $7410235 using network 3. Starting with the base
simulation in which the value of the momentum-correction coefficient
was unity and the values of Manning's n were those determined in
calibration (table 4), the effects of increasing one at a time the
values of the kinematic eddy viscosity, Manning's n, and fhe discharge

were determined. These results are not illustrated.

First, the value of the kinematic eddy viscosity was increased
from 0.6UxH to 0.66UxH. The results were virtually identical to

those with an eddy viscosity value of 0.6UxH.

In the next simulation, the values of Manning's n were increased
10 percent. Compared with the base simulaticon, water—surface

elevations were increased both upstream and downstream from the
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constriction. At cross section 400, water—-surface elevations rose
about 0,04 ft, but the fall through the opening at cross section
‘1000 increased only aboﬁt 0.01L ft. Velocities in the low-water
channel were reduced slightly both upstream and downstreém from

the constrictilon.

Next, the value of the discharge was increased 10 percent.
Water—-surface elevatilons rose both upstream and downstream from
the constriction. Water—surface elevations at cross section 400
rose about 0.09 ft, and the fall through the opening at cross
section increased about 0.08 ft. Velocities increased slightly at

all cross sections.
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Figure 143. Observed and computed water-surface elevations (WSE)
for experiment $6210035, B = 0, network 3. The letters
U and D refer, respectively, to the upstream side and
the dowmnstream side of the constrictiocn.

210



10+ -

COMPUTED X~VELOCITY
------- COMPUTED Y-VELOCITY

08 O OBSERVED X~VELOCITY
© OBSERVED Y—VELOCITY

VELOCITY, IN FEET PER SECOND

0 50 100 150 200 250 300
DISTANCE FROM LEFT BANK, IN FEET

Figure 1l44. Observed and computed velocity components at cross
section 900 for experiment §6210035, 8 = 0, network 3.
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Figure 145. Observed and computed velocity components abt cross
section 950 for experiment $6210035, § = 0, network 3.
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Figure 146. Observed and computed velocity components at cross
section 1050 for experiment $6210035, 8 = 0, network 3.
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Figure 147. Observed and computed velocity components at cross
section 1100 for experiment $6210035, g8 = 0, network 3.
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Finally, to evaluate the importance of the convective terms
in these simulations, the value of the momentum—correction
coefficient, B, was set equal to zero in simulations of experiments
$6210035, $6810105, and $7410235. Water—surface elevations, velocity
profiles at cross sections 900, 950, 1050, and 1100, and a partial
velocity field for S$6210035 are shown in figures 143 through 148;
for 56810105 in figures 149 through 154; and for §7410235 in figures

155 through 160.

In all three cases, there is a decrease in the computed fall
through the opening. The decrease becomes proportionately larger
as the discharge increases. The peak velocities upstream from the

constriction are higher than those in the calibration simulations,
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Figure 149. Observed and computed water-surface elevations (WSE)
for experiment S6810105, B = 0, network 3. The letters
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the downstream side of the constriction.
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Figure 150. Observed and computed velocity components at cross
section 900 for experiment $6810105, 8 = 0, network 3.
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Figure 151. Observed and computed velocity components at cross
section 950 for experiment S$6810105, B = O, network 3.
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Figure 152. Observed and computed velocity components at cross
section 1050 for experiment 56810105, 8§ = 0, network 3.
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Figure 153. Observed and computed velocity components at cross
section 1100 for experiment 56810105, 8 = 0, network 3.
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and the peak velocities downstream are lower.

The jet and

recirculation zones downstream from the constriction are not present.

Conclusions from the Application of FESWMS-2DH to Flood

Plain Simulation Facility Data

The following conclusions can be drawn from the application

of FESWMS-2DH to data from the FPSF.

Backwater assoclated with

steady flow through a contracted opening in the FPSF can be

accurately simulated with FESWMS-2DH using a simple representation

of the kinematic eddy viscosity, a momentum—-correction-coefficient

value of unity, and a single linear representation of Manning's n

as a function of depth determined during normal flow at the same

discharge.
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Figure 158. Observed and computed velocity components at cross
section 1050 for experiment 87410235, 8 = 0, network 3.
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Figure 159. Observed and computed velocity components at cross
section 1100 for experiment S$7410235, B = 0, network 3.
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B = 0, network 3. A vector 1 inch long represents
a velocity of 4 feet per second.
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including the jet and recirculation zones downstream from the
constriction, requires more information about the values of the

momentum~correction coefficient and Manning's n near the opening.

A fairly coarse network provides good results when depth and
velocity gradients are not too large. As depth and velocity
gradients increase, network refinement 1s necessary to avoid
underestimation of backwater and oscillations in the velocity
field. The flux—computation and continuity-norm options in FLOMOD
can be used to selectively refine a network to achieve improved
accuracy. In all cases, network refinement beyond a certain level

provides no improvement in the solution.

In addition, the results illustrate that much more care is
required in modeling when the convective terms are significant.
Not only is network refinement necessary to avold velocity
oscillations where gradients are large, but also good information
about the values of the momentum—correction coefficient and Manning's
n near the opening is necessary to avoid large errors in backwater
and flow distribution. 1In particular, if the convective terms are
neglected, it is not possible to obtain adequate estimates of
backwater and flow distribution when there are large depth and

velocity gradients near the contracted opening.
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USE AND CALIBRATION OF FESWMS-2DH

From experience with the modeling system FESWMS-2DH in field
applications to river—flood-plain systems and in modeling flows in
the Floed Plain Simulation Facility (FPSF), discussed in this
report, some general guidelines for model users can be deduced.

It is recommended that a potential model user read the section in
this report on FPSF modeling and the reports by Lee and others
(1983), Gilbert and Froehlich (1987), and Wiche and others (1988)

on the Pearl River study at Interstate Highway 10 (I-10).

Application of the modeling system requires the collection and
analysis of field data, the design of a finite-element network,
model adjustment to eliminate deficiencies in the solution, model

calibration, and, if possible, model verification.

How well a model reproduces an observed flow depends on the
approximations made in the model and on the calibration data.
Calibrated model results represent a best fit to the available

calibration data.

Network design and adjustment 1s a process of approximating
hydraulically important topographic and vegetative-cover features
with a finite number of homogeneous elements. The quality of the
approximation depends on the amount and quality of the available
topographic and vegetative-cover data. Further approximations are
made in assigning model boundary conditions. In addition, the

model equations describe the prototype flow process in an approximate
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way. The quality of this approximation depends in part on how

well such assumptions as steady flow and the eddy-viscosity concept
reflect prototype conditions. This approximation also depends on

the values of the model's empirical coefficients, determined during
calibration. Hence, velocities and water—surface elevations obtained
from the calibrated modél are approximate values, responses of
approximate equations to approximate boundary conditions, topography,

and vegetative cover.

Realistic and mutually consistent values of empirical parameters
are chosen during calibration to bring model results into as close
agreement as possible with observed data. TIf there is a major
discrepancy between model results and observed data, then the
approximations made in constructing the model are in error or the
observed calibration data are not accurate or are not representative
of the general hydraulic situation. The capability of a model to
reproduce observed flows and subsequently predict the outcome of
future or hypothetical flows depends largely on the amount and
quality of the topographic, vegetative-cover, boundary-condition,
and calibration data that are available. Thus, improvements in

observed data can lead to more accurate simulation.

Data Collection and Analysis

Use of FESWMS-2DH in an actual study requires the collection
and analysis of a large amount of hydrographic and topographic

data. For example, if an actual flood in a river-flood-plain
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system is to be modeled under the assumption of steady flow, high-
water marks distributed throughout the study area and discharge
measurements at highway crossings should be collected for use in
establishing model boundary conditions and calibrating the model.
If data from additional floods are available, these data may be

used for model verificatiocn.

Detailed topographic data must be obtained. For river—flood-
plain flows, these data include longitudinal profiles and cross
sections for major channels and topographic maps of the inundated
flood plain. Speclal attention must be given to channel and overbank
topography at and near bridge openings. Bridge and culvert dimensions
must be obtained for use in network layout and the determination

of one-dimensional bridge and culvert parameters.

Infrared aerial photographs of the study area are useful in
determining vegetative type and density, which in turn determine

areas of nearly uniform roughness.

Network Design

To apply the model, the boundaries of the area to be modeled
must be determined, and the study area must be represented as an
equivalent network of triangular or quadrilateral elements. In
modeling a highway crossing of a river-flood-plain system, the
lateral boundaries of the area inundated must be approximately
determined first. Then the upstream and downstream boundaries

should be located at least one flood-plain width distant from the
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highway crossing, so that errors In assigning model boundary conditions
will not significantly affect flow conditions at the crossing and
modifications made to the model at the crossing will have little

effect on the boundary conditions.

Elements with curved sides can be used to approximate the lateral
boundaries of the system, where tangential flow 1s specified. The
curved sides can better approximate the natural features of the boundary.
Curved element sides can also be used to avoid large angles on the
boundary where an element side common to two elements intersects the
boundafy. Although mass 1s conserved globally regardless of the
boundary configuration, minimizing boundary angles also minimizes
local mass-conservation errors at the boundary. The use of curved-
sided elements to define model boundaries, river channels, and
highway embankments is shown in figure 161, a finite—element network
near the I-10 crossing of the Pearl River in southeastern Louisiana

(adapted from Wiche and others, 1982, p. 264).

If it is not possible to determine the boundaries of the
inundated area, the automatic—-boundary-adjustment feature of FESWMS-
2DH can be used to obtain an initial solution. Then the boundaries
can be more precisely located on the basis of preliminary model
results, and, if desired, the lateral boundaries can be adjusted

for later simulations.

Experilence has shown that it is best to locate upstream and

dovnstreamn model boundaries at approximately right angles to the
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flood-plain axis and to the lateral boundaries of the flood plain

or flow domain.

After the boundaries are defined, the study area is subdivided
into an equilvalent network of triangular or quadrilateral elements.
FESWMS-2DH accepts any combination of six-node triangular and
eight~ or nine—-node quadrilateral elements with straight or curved
sides. 1In forming elements, internal angles should be bounded away
from zero and 180 degrees. Also, midside nodes of curved element
sides should be located within the middle third of the side.

Careful placement of nodes and eléments is necessary to adequately
represent prototype topography and vegetative cover. Subdivision
lines between elements are located where abrupt changes in vegetative
cover or topography occur. Each element should be designed to
represent an area of nearly homogeneous vegetative cover. Automatic
network generation can be used in this process after homogeneous
subareas of the study area are determined. Elements with curved

sldes can be used to define channels realistically (fig. 161).

Topographic variations can lead to large velocity and depth
gradlents that require additional neﬁwork detail. For example, In
field applications, it has been found that local inconsistencies
may occur in the solution if the value of the ratio of the maximum
depth to the minimum depth on an element exceeds 10. To provide a
margin of error, it is suggested that the value of this ratio be
kept less than five 1if possible. Thus, additional network detail

may be required in regions where ground-surface gradients, such as
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between overbanks and channel bottoms, are large.

Model boundaries, as well as model topography, can lead to
flow conditions that vary greatly in a short distance. Thus, at a
contracted opening, for example, network detail must be increased
for solution accuracy. The discussion of FPSF modeling in this
report illustrates the dependence of solution accuracy on network
detail in such a situation. It was seen that an increase in discharge
can lead to an increase in depth and velocity gradients and thus a
decrease in accuracy. Thus, network refinement may be necessary
as discharge 1s increased. It was also shown how the calculation
of the mass flux and the element continuity norm can be used to
locate and refine parts of the network where sclution accuracy is
10&. In FPSF modeling and steady-flow flield applications, it has
been found that if the computed discharge at a contracted opening
differs from the total inflow by no more than 5 percent, the computed
water-surface elevations will be sufficiently accurate for engineering

purposes.

The FPSF modeling also showed that network refinement may be
necessary to eliminate velocity oscillations and resolve flow

features such as recirculation zones.

The use of elements with aspect ratios greater than unity makes
it possible to design a network with fewer elements than would be
required otherwise. The element aspect ratio is defined as the

ratio of the largest element dimension to the smallest. The optimum
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aspect ratio for a particular element depends largely om the local
velocity and depth gradients. If these gradients can be estimated
beforehand, it is possible to align the smallest element dimension
with the largest variable change and the largest dimension with

the smallest change.

Elements with large aspect ratlos are used frequently in defining
river channels in a wide flood plain. During network design, the
longest element side is aligned with the channel axis, along which
velocity and depth changes are typlcally small. Element aspect
ratios should be kept to a maximum of about 10. In channel reaches
with significant curvature, however, it may be necessary to use a

much smaller value to aveoid an unrealistic solution.

The number of elements in a network may also be reduced by
other approximations. Only the larger channels in a system need
to be included in the network. Less Ilmportant ones may be ignored.
Usually, prototype channel cross sections are represented In the
model by elther triangular or trapezoidal cross sections with
cross—-sectlonal areas equal to the measured areas. Meandrous
channel reaches with relatively small flows may be replaced with
artificially straightened, but hydraulically equivalent, reaches.
For a discussion of this procedure, the reader may refer to Lee

and others (1983, p. 26).

Weirs, culverts, and small bridges that are modeled in a one-

dimensional sense are treated as point flows along the boundary of
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the finite—element network. A point flow is the total discharge
that crosses the network boundary due to flow at a specific node

point.

One-dimensional weirs and culverts are described by a set of
parameters and two boundary node polnts, one on either side of a
welr or on either end of a culvert. Flow over the weir or through
the culvert 1s computed on the basis of the water-surface elevations
and velocities at the two node points and the specified parameters.
For weirs, the discharge coefficient for free-flow conditions, the
length of the weir, and the crest elevation must be specified.

For culverts, the discharge coefficient, the cross—sectional area,
the hydraulic radius, the length, the Maanning roughness coefficient,

and the invert elevation are the required parameters.

Flow over roadway embankments is modeled as Qne—dimensional
weir flow. To do this, the finite-element network is designed
with solid boundaries following both sides of the embankment. The
embankment is divided into a number of weir segments with appropriate
parameters assigned to each segment. The number of segments to
use depends on the variation of the roadway elevation along the
embankment and the spacing of node points on the solid boundaries
defining the embankment. The node points chosen to define either
side of a welr segment should be located approximately at the
center of that weir segment. The location of each weir segment,
therefore, should be kept in mind when designing the finite-element

network in the vicinity of the embankment.
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Roadway
embankment

EXPLANATION

e Corner node
o Midside node 0

Figure 162. Finite—element network at a roadway embankment
that contalns a culvert and is divided into weir segments.

The same node can be used to define the side, or end, or both

of more than one weir, or culvert, or both. In the case of an

overtopped roadway embankment containing a culvert, such as shown

[
in figure 162, the same node points are used to define the culvert

and a weir segment.

Two-dimensional flow through a bridge or culvert, when the

water surface is not 1in contact with the top of the bridge or
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culvert opening, is modeled exactly as ordinary flow and requires
no special consideration. When the water surface is 1n contact
with the top of the opening, however, pressure flow exists. 1In
this case, special consideration must be given to the design of
the finite-element network in the vicinity of the bridge opening

in order to properly model the flow.

If pressure flow within a bridge opening is to be considered,
at least two rows of elements conforming to the bridge deck must
be constructed as shown in figure 163. The elevation of the ceiling,
or top of the opening (the underside of the bridge deck), must
also be gpecified for each of the corner nodes belonging to the
elements describing the opening. More than two rows of elements
within the opening may be needed to accurately simulate the confined-

flow situation.

Model Adjustment, Including Calibration

After network design 1is complete, boundary conditions are
applied, and the prototype flow is simulated as closely as possible.
The model~adjustment process consists of two parts: the adjustment
of empirical wmodel coefficients (model calibration) and the adjustment
of model boundary conditions, network detail, and ground-surface
elevations on the basls of additional information obtained during

the study.

The two—-dimensional surface-water flow model is based on the

formulation and solution of equations which simulate a complex

233



Bridge deck

EXPLANATION
e Corner node
o Midside node

Figure 163. Finite-element network at a bridge where pressure
flow within the bridge opening is modeled.

physical flow situation. Since no physical flow system can be
completely described or understood, the mathematical formulation
involves some level of approximation. Three-dimensional topographic
features are represented by twe-dimensional elements, and the
physics of flow is assumed to obey differential equations in which
empirical hydraulic coefficients appear. Model calibration is the

process of adjusting the values of the empirical coefficients so
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that the model simulates an observed flow as closely as possible.

This aspect of model adjustment is discussed in detail below.

The second aspect of the model-ad justment process involves
the correction of deficiencies 1n the model boundary conditions
and the representation of flood-plain topography. Often, there
are gaps in the data used to estimate model hboundary conditionms,
design the model network, and assign model ground-surface elevations.
During model adjustment, it occasionally becomes apparent that
these data gaps are causing the model to fail to simulate correctly
certain observed features of the flow being studied. A review of
existing data or additional data collection is necessary in these
instances. Then boundary conditions, network detaill, or grouand-
surface elevations are adjusted on the basls of the additional
information. This aspect of model adjustment 1s also discussed in

detall below.

To calibrate a model, the values of the momentum-correction
coefficient and the eddy viscosity are usually set first. The
momentum—correction coefficient is usually assigned the value
unity unless information from vertical velocity profiles 1s available
which indicates that a larger value should be used. The value of
the eddy viscosity can be assigned as discussed in the section on
eddy viscosities. Often, the value 0.6UxH is sufficient, but 1f it
is not possible to obtain convergence for this value, a somewhat

larger value may have to be used.
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Once the values of the momentum-correction coefficient and
the eddy viscosity are fixed, preliminary calibration work can
focus on determining the values of the roughness coefficilents.
Nominal values are selected for initial use on the basis of available
data such as infrared aerial photographs of the flood plain and
field inspection. xn making both the initial estimates of the
roughness values and subsequent modifications to them, care should
be taken to ensure that the assigned values are reasonable and
nutually consistent. Preliminary calibration Is based on whatever
data are available for the flow being simulated and consists of
matching the available data as closely as possible. In the Pearl
River study, high-water marks and discharges at bridge openings
were available. In the FPSF modeling, discharges, observed water-
surface elevations, and the four cross—-sectlonal velocity profiles

were used in calibrating the flow model.

At this point, it 1s useful to examine the flow model's
sensitivity to such factors as boundary conditions and model
coefficlents. For example, in the Pearl River study, it was found
that computed water—surface elevations were most sensitive to the
roughness values for the wooded flood plain and the channels at
and near the bridge openings (Lee and others, 1983, p. 26). This
information was useful in fine tuning the model. 1In the section
on FPSF modeling, model sensitivity to the values of the upstream
discharge, the Manning n, the momentumcorrection coefficient, and

the eddy viscoslty was discussed.
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Appropriate adjustments to the values of the roughness
coefficients may give close agreement between computed and observed
data in most cases. Often, however, discrepancies between model
results and observations make 1t necessary to obtain additional
data or review previously obtained data. Additional field work is
occasionally necessary to check the location and elevation of high-
water marks and study previously overlooked topographic features.

On the basis of the results of the early simulations and the additional
observations, modifications are then made to model boundary conditions,

network detail, and model ground-surface elevations.

For example, in the Pearl River study, inadequate information
for use in establishing the distribution of discharge at the upstream
model boundary made 1t necessary to make adjustments to the upstream
boundary condition until observed high-water-mark—-elevation data
were adequately approximated. Also, it was found that failure to
include a short dike in the network near the upstream model boundary
and erroneous ground-surface elevatlions on the overbanks at several
I-10 bridge openings were adversely affecting model results (Lee

and others, 1983, p. 29-30).

After such adjustments are completed, further fine tuning of

model coefficients may be necessary for final calibration.

The values of the Manning n required for two-dimensional model
calibration are generally somewhat smaller than the values required

to calibrate a one-~dimensional model of the same reach. Several
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factors contribute to this situation. Wherever lateral flow is
significant, streamlines are not parallel to the axis of the flood
plain. Thus, flow paths are generally longer in a two-dimensional
model than 1n a one-dimensional model, and it is possible to account
for a given loss of energy with a smaller roughness coefficient

than is needed in a one-dimensional model. In addition, some

energy loss is accounted for by the turbulent—stress terms in the
two—dimensional momentum equations. This loss must be accounted

for by bottom friction in a step-backwater model.

If data from another flood are available, the calibrated flow
model can be verified. Verification involves determining how well
the already calibrated model simulates the second flood. Although
changes usually have to be made in boundary conditions and perhaps
the location of the lateral boundaries, the values of the empirical
coefficients are unchanged. If there is good agreement between
the computed and observed data for the second flood, the modeler
has more confidence in results obtained during the use of the model
to study hypothetical flows or flood-plain alterations other than

the one for which the model was calibrated.
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USE OF FESWMS-2DH BY THE HIGHWAY INDUSTRY

The FESWMS—2DH modeling system is a versatile tool for steady-
flow analyses at highway crossings where the flow is two dimensional,
Examples of such situations are given In the reports on the Congaree
and Pearl Rivers discussed below. Wide distribution within the
highway industry of reports on FESWMS-2DH and its application as
well as documents such as the executive summary of this project
will make information about the system available to potential
users. Participation in training courses by potential model users
will lead to effective use of the model. Future model enhancements
and software maintenance will ensure growing model capabilities

with time.

Operational Potential of FESWMS-2DH

The use of FESWMS-2DH and its predecessors in several complex
modeling projects, including the analysis of highway crossings of
the Congaree River iIn South Carolina (Lee, 1980; Lee and Bennett,
1982) and the Pearl River between Louisiana and Mississippi (Lee
and others, 1982; Wiche and others, 1982; Lee and others, 1983;
Gilbert aund Froehlich, 1987; Gilbert and Schuck-Kolben, 1987;
Wiche and others, 1988), has already demonstrated the operational
potential of the modeling system. 1In these studies, backwater and
drawdown caused by highway embankments with multiple openings
across wide wooded flood plains were determined. The studies have

shown that the finite—element model can be used to simulate both
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lateral and longitudinal veloclties and variations in. water—surface
elevation, highly variable flood-plain topography and vegetative
cover, and geometric features such as highway embankments, dikes,
and channel bends. Geometric features of widely varying sizes

were easily accommodated within a single finite-element network.

In the Congaree study, the modeling system was used to study
a multiple-opening crossing of a flood plain with a single channel.
The rapid expansion of the flood plain of the river upstream from
the crossing, an extensive dike system, and highly variable roughness
combined to cause significant lateral velocities and variations in
stage during floods. A major accomplishment of the study was the
demonstration of the model's capability to simulate flows on a
flood plain with large roughness variations and large changes in

depth with distance.

In the Pearl River study, the capability of the modeling system
to simulate the significant features of steady flow in a complex
multichannel river—flood~plain system with variable topography and
vegetative cover was successfully demonstrated. These features
included lateral variations in discharge distribution and backwater
and drawdown. Gilbert and Froehlich (1987} and Gilbert and Schuck-
Kolben (1987) demonstrated the use of FESWMS-2DH to model flow

over highway embankments (weir flow).
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Training

Making the model useful to those involved in the design of
river and flood—-plain highway crossings requires a training program.
Two possible methods for providing training in the use of FESWMS-2DH

are presented below.

A l-week FESWMS-2DH workshop is planned in the Southeastern
Region of the Geologlcal Survey. The workshop is planned for a
class size of about 20 and will involve roughly equal parts of
lectures and student exercises. A tentative workshop outline is
given In table 6. The course will be avallable to Geological
Survey personnel and cooperating FHWA and State highway agency

hydraulic englneers.

A second possible tralning program invelves small teams working
on real problems with the assistance of an instructor. Two or
three problems would be identified in different locations. A team
consisting of, for example, Geological Survey, Federal Highway
Administration, State highway agency, and possibly other public
works agency personnel would be assembled for each problem. Each
team would study the FESWMS-2DH users manual, obtain field data
necessary to do the project, and attempt to design a preliminary
network. Then all the teams would meet with the Instructor for
2 days for comments on thelr preliminary network designs and lectures
on the use of FLOMOD. In the weeks following the 2-day workshop,

each team would continue to work on its problem, improving the
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Table 6.

Outline for a l-week workshop on finite-element

surface-water flow modeling using FESWMS-2DH.

Day Time Subject
Monday Morning Introduction to two—dimensional flow
modeling
Review of shallow-water equations
Data requirements
Sample applications of FESWMS-2DH (finite-
element surface-water modeling system)
Afternoon Use of data—input module DINMOD (network
preparation)
Student exercises with DINMOD
Tuesday Morning Computational aspects of surface-water
flow simulation using flow module FLOMOD
Afterncon  More student exercises with DINMOD
Wednesday Morning Use and operation of flow module FLOMOD
Afternoon Student exercises with FLOMOD
Thursday Morning Use and operation of the analysis-of-output
module ANOMOD
Afternoon Student exercilses with ANOMOD
Friday Morning Discussion of flow—-simulation results

Questions and answers
Quiz and evaluation

network, running FLOMOD, and applying ANOMOD to display the results
graphically. Consultation with the instructor would be by telephone.
After 1 or 2 months, the teams would meet again with the instructor.
Each team would present its results to the other teams and the

instructor. Problems encountered and questions raised during the
modeling would be discussed. After the teams returned home, they
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would complete their modeling projects with consultation with the

instructor by telephone.

Future Possible Improvements to FESWMS—-2DH

Several future improvements are possible for FESWMS-2DH.

Although many interpolation and weighting functions and several
forms of the flow equations were studied during this project, it
is possible that more efficient and accurate schemes based on
other such functions, or equations, or bothrmay be discovered in the
future. If this happens, such a scheme should be incorporated

into FLOMOD.

Model efficiency could be iuncreased if it was not necessary
to simulate channels in a two—-dimensional sense. Simulating
channels one dimensionally would increase model efficiency because
of the reduction in the number of computational nodes. It would
alsc allow consideration of channels that would be omitted in a
two~dimensional network for reasons of computational efficiency
and permit the connection of a two-dimensional model with one-

dimensional models upstream and downstream.

Most bridge hydraulic engineers are quite familiar with one~
dimensional river-hydraulics models (such as WSPRO and HEC-2).
These engineers can quickly assemble the data needed as input to
these one-dimensional models and rapidly obtain results. However,

even in cases where hydraulic conditions are not very complex, it

243



nay be useful to have results from a two-dimensional flow analysis.
For example, a detailed description of a two-dimensional flow field
may be useful in determining local scour around bridge piers and
abutments and in designing erosion protection measures at approach
embankments, abutments, and plers. By using one-dimemsional input
data (cross sections and bridge geometry), a two-dimensional input
data file could be created automatically, thus greatly simplifying
operation of the two-dimensional model. 1In fact, a combined one-
dimensional/two—dimensional steady-flow model could be developed
for evaluating long river reaches where short reaches, such as

around bridges, could be simulated in two dimensions.

The addition of the capability to model sediment transport
would allow evaluation of erosion and deposition of sediment in
river channels, expecially around structures such as dikes and
bridges. Although an extrémely accurate prediction of scour, or
deposition, or both may not be possible without calibrating such a
model using prototype measurements, the capability to simulate
sediment transport would help detect conditions where a problem is
likely to occur. Sowe examples of such situations are:

® Eroslon, or deposition, or both in reaches of relocated or
"improved” river channels.

e Erosion, or deposition, or both around dikes used to
stabilize channel banks.

e Constriction scour at bridges (both live-bed and clear-water
scour conditions could be readily evaluated).
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Although it is possible now to simulate pressure flow through
a bridge opening (flow in contact with the top of the opening), it
1s not yet possible to simulate pressure flow through the opening
combined with weir flow over the top of the opening. Such a model

enhancement could be added in the future.

Permeable spur dikes often are used to protect channel banks.
FESWMS~2DH currently cannot be used to simulate flow around, through,
and over such dikes. Empirical relations could be added to the
model so that such structures could be simulated accurately.

Physical hydraulic model studies are needed to determine empirical

coefficients used to simulate flow through permeable spur dikes.

Software Maintenance

Experience has shown that most of the problems encountered
during use of the FESWﬁS-ZDH programs are due to incorrect input
data. 1Individuals experienced in the application of the model,
either in the Geological Survey, the Federal Highway Administration,
of State highway departments, can be consulted when such problems
arise. For further information regarding assistance, contact the
U.S5. Geologlcal Survey, Water Resources Division, 430 National

Center, 12201 Sunrise Valley Drive, Reston, VA 22092.

Maintenance of FESWMS-2DH software by the Geological Survey,
the Federal Highway Administration, or other organizations is
dependent on the availability of funds. Such software maintenance

could include the correction of conceptual or coding errors; the
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communication to users of necessary code changes; the publication
of improved versions of the codes and supporting documentation;

and response to general correspondence on the modeling system.
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SUMMARY AND CONCLUSIONS

In‘this report were presented the results of the project "Two-
Dimensional Finite-Element Hydraulic Modeling of Bridge Crossings,”
conducted by the Geological Survey in cooperation with the Federal
Highway Administration. The finite-element surface-water flow
modeling system, FESWMS—-2DH, developed under this project, consists
of three programs: a data lnput module, DINMOD; a hydrodynamic
flow module, FLOMOD, and an analysis—of-output module, ANOMOD.

The features of each program were discussed in this report.

The preprocessor, DINMOD, generates a two-dimensional finite-
element network for use by FLOMOD. In particular, DINMOD edits
input data, plots the finite-element network, and orders elements
to permit an efficient solution. DINMOD is alsoc capable of automatic

network generation and refinment.

FLOMOD is capable of simulating steady or unsteady two-
dimensional flow in the horizontal plane. The vertically integrated
equations of motlon and continuilty are solved for the depth-
integrated velocity components and depth at the node points of the
finite~element network. The model takes into account bed friction,
turbulept stresses, wind stresses, and the Coriolis force. Flow
over wéirs (such as highway embankments) and through culverts can
be simulated. The effects of vertical nonuniformity of the flow may
be taken into account b§ the use of momentum—correction coefficients.

Mass-flux and continuity-norm options may be used to locate areas
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where network refinement is needed to improve accuraéy.

The postprocessor, ANOMOD, uses output from FLOMOD to generate
plots of velocity or unit-discharge vectors and ground-surface-
elevation or water-surface—elevation contours. ANOMOD also generates
time—-history plots at node points or cross—section plots at a
specified time of velocity, unit discharge, or water-surface

elevation.

Also discussed were initial and boundary conditions, the
application of the finite-element method to the flow equations to
give a system of nonlinear algebraic equations, and the solution

of the resulting system of equations.

A major part of the report was devoted to the application of
FESWMS-2DH to data from the Geologilcal Survey's Flood Plain Simulation
Facility. It was shown that backwater assoclated with steady flow
through a centracted opening in the FPSF could be simulated without
difficulty. On the other hand, adequate representation of the jet
and recirculation zones downstream from the constriction required
information about local values of the momentum—-correction coefficient
and Manning's n. As discharge and consequently velocity and depth
gradients increased, network refinement was necessary to avoild
velocity oscillations and underestimation of backwater. The results
also 1llustrated the ilmportance of the convective terms when large

depth and velocity gradients occur near the contracted opening.

248



The report also discussed the use and calibration of FESWMS-2DH
(data collection and analysis, network design, and model adjustment,
including calibration) and the use of FESWMS-2DH by the highway
industry (operational potential of FESWMS-2DH, training, future

possible improvements to FESWMS-2DH, and software maintenance).

The FESWMS-2DH modeling system is a versatile tool for steady-
flow analyses at highway crossings where the flow is two dimensional.
Its wide range of capabilities were presented in this report and
have been demonstrated in applications to the Flood Plain Simulation

Facility and several field problems.
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